Answer:
v = 72.54 m/s
Explanation:
We have,
Length of a guitar string is 0.62 m
Frequency of a guitar string is 234 Hz
For guitar string,

The velocity of the wave in the string is given by :

So, the velocity of the waves in the string is 72.54 m/s.
Answer:
2.41 L
Explanation:
We can solve the problem by using the ideal gas equation, which can be rewritten as:

where we have:
(initial pressure is stp pressure)
is the initial volume
is the initial temperature (stp temperature)
is the final pressure
is the final volume
is the final temperature
By substituting the numbers inside the formula and solving for V2, we find the final volume:

which corresponds to 2.41 L.
Answer:
nucleus is the center of atom
Answer:
The total frictional force is 358.0 newtons
Explanation:
Power is the amount of average work (W) an object does on a period of time (Δt):

Remember average work is average force (F) times displacement (Δs):

but displacement over time is average speed
, then:
(1)
That is, the power of the car is the force the engine does times the speed of the car. As the question states, if the car is at constant velocity then the power developed is used to overcome the frictional forces exerted by the air and the road, that is by Newton's first law, the force the motor of the car does is equal the force of frictional forces. So, to find the frictional forces we only have to solve (1) for F:

Knowing that 1hp is 746W then 30hp=22380W and 1 mile = 1609m then 140 mph = 225308
=
, then:

Answer:
B
Explanation:
Because it has to increase