gawaingnpang nkabuhayan, hamon at oportinidad
Answer:
Changes in the object's momentum (answer D)
Explanation:
A net force will cause an object to change its velocity, and that will affect the object's momentum, which is defined by the product of the object's mass times its velocity.
So, select the last option (D) in the given list.
Answer:
The time it will take for the car to reach a velocity of 28 m/s is 7 seconds
Explanation:
The parameters of the car are;
The acceleration of the car, a = 4 m/s²
The final velocity of the car, v = 28 m/s
The initial velocity of the car, u = 0 m/s (The car starts from rest)
The kinematic equation that can be used for finding (the time) how long it will take for the car to reach a velocity of 28 m/s is given as follows;
v = u + a·t
Where;
v = The final velocity of the car, v = 28 m/s
u = The initial velocity of the car = 0 m/s
a = The acceleration of the car = 4 m/s²
t = =The time it will take for the car to reach a velocity of 28 m/s
Therefore, we get;
t = (v - u)/a
t = (28 m/s - 0 m/s)/(4 m/s²) = 7 s
The time it will take for the car to reach a velocity of 28 m/s, t = 7 seconds.
Answer:
if I aint wrong it would 2nd one
The total momentum of a system is the vector sum of all the individual masses that comprise the system.
Moreover, To calculate the total momentum of two objects during a collision, add their individual momentums. You can calculate the momentum for each object using the formula p=mv, where p is the momentum, m is the mass, and v is the velocity. The law of conservation of momentum can be expressed as follows. For a collision between object 1 and object 2 in an isolated system, the total momentum of the two objects before the collision is equal to the total momentum of the two objects after the collision.
You can learn more about this at:
brainly.com/question/20301772#SPJ4