Answer:
v = 2,66x10⁻⁵ P[H₂C₂O₄]
Explanation:
For the reaction:
H₂C₂O₄(g) → CO₂(g) + HCOOH(g)
At t = 0, the initial pressure is just of H₂C₂O₄(g). At t= 20000 s, pressures will be:
H₂C₂O₄(g) = P₀ - x
CO₂(g) = x
HCOOH(g) = x
P at t=20000 is:
P₀ - x + x + x = P₀+x. That means P at t=20000s - P₀ = x
For 1st point:
x = 92,8-65,8 = 27
Pressure of H₂C₂O₄(g) at t=20000s: 65,8-27 = 38,8
2nd point:
x = 130-92,1 = 37,9
H₂C₂O₄(g): 92,1 - 37,9 = 54,2
3rd point:
x = 157-111 = 46
H₂C₂O₄(g): 111-46 = 65
Now, as the rate law is :
v = k P[H₂C₂O₄]
Based on integrated rate law, k is:
(- ln P[H₂C₂O₄] + ln P[H₂C₂O₄]₀) / t = k
1st point:
k = 2,64x10⁻⁵
2nd point:
k = 2,65x10⁻⁵
3rd point:
k = 2,68x10⁻⁵
The averrage of this values is:
k = 2,66x10⁻⁵
That means law is:
v = 2,66x10⁻⁵ P[H₂C₂O₄]
I hope it helps!

The element having valency of 1 is ~
Answer:
The average kinetic energy of the system has increased as a result of the temperature increasing.
Explanation:
Assuming this is a gas based on the framing.
The molecules of a gas span a distribution of speeds, and the average kinetic energy of the molecules is directly proportional to the absolute temperature of the sample. KEavg is proportional to T.
This can be further studied until the Kinetic-Molecular Theory.
People who work with radioactive materials often wear a film badge to reveal how much radiation they have been exposed to. The film badge dosimeter or the film badge is a dosimeter worn by these people working with materials that are radioactive for the purpose of monitoring cumulative radiation dose due to ionizing radiation. The badge has two parts; the photographic film, and a holder.
Answer:
[CH₃OH] to decrease and [CO] to increase.
Explanation:
- Since the energy appears as a product. So, the system is exothermic that releases heat.
- Increasing the temperature of the system will cause the system to be shifted to the left side to attain the equilibrium again.
<em>[CH₃OH] to decrease and [CO] to increase.</em>
<em></em>