Answer:
Explanation:
mass of 1 L water = 1 kg .
200⁰F = (200 - 32) x 5 / 9 = 93.33⁰C .
260.928 K = 260.928 - 273 = - 12.072⁰C .
water is at higher temperature .
Let the equilibrium temperature be t .
Heat lost by water = mass x specific heat x fall of temperature
= 1 x 4.2 x 10³ x ( 93.33 - t )
Heat gained by copper
= .25 x .385 x 10³ x ( t + 12.072 )
Heat lost = heat gained
1 x 4.2 x 10³ x ( 93.33 - t ) = .25 x .385 x 10³ x ( t + 12.072 )
93.33 - t = .0229 ( t + 12.072)
93.33 - t = .0229 t + .276
93.054 = 1.0229 t
t = 90.97⁰C .
Explanation:
Given that,
Capacitor 
Resistor 
Peak voltage = 5.10 V
(A). We need to calculate the crossover frequency
Using formula of frequency

Where, R = resistor
C = capacitor
Put the value into the formula


(B). We need to calculate the
when 
Using formula of 

Put the value into the formula


(C). We need to calculate the
when 
Using formula of 


(D). We need to calculate the
when 
Using formula of 


Hence, This is the required solution.
<span> 1.the atom has 7 neutrons and 8 protons....
because the positively charged particles are the protons ...and 8 is also the atomic number ...so number of neutrons can be calculated by subtracting </span>atomic number from the mass number...which gives us the neutrons 7 ...
Hope it helps !!!
<u>Explanation</u>
- The relationship between the strength of a bond (single vs double vs triple) and its wave-number on an IR spectrum as the bond strength increases the wave number increases.
STRENGTH OF BONDS TRIPLE>DOUBLE>SINGLE
WAVE NUMBER SINGLE>DOUBLE>TRIPLE
- wave number for single bond is greatest because it has greatest bond frequency among the three( more the frequency greater is the wave number).
1 watt = 1 joule/sec
2,000 watts = 2,000 joules/sec
(2,000 joule/sec) x (120 sec)
= (2,000 x 120) (joule-sec/sec)
= 240,000 joules .