If you’re asking to balance the equation then:
Pb(NO3)2(aq) + 2KCl(aq) -> 2KNO3(aq) + PbCl2(s)
Just remember: the equations at the end is Cl not C12
Note: the small number on the bottom (subscripts) apply to the one element if it’s inside the bracket and if the small number is on the outside of the bracket it applies to all the elements. For example the 3 in (NO3)2 applied only to the O (oxygen) and the 2 applies to both N and O but don’t forget it’s multiplied. So it would be 2 N’s and 6 O’s bc the 3 multiplies with the 2 only for the O.
Vacuum gage connected to a chamber reads 35 kpa at a location where the atmospheric pressure is 92 kpa then the absolute pressure in the chamber and express is 57kpa
Gauge pressure is the pressure relative to atmospheric pressure. Gauge pressure is positive for pressures above atmospheric pressure, and negative for pressures and absolute pressure is the sum of gauge pressure and atmospheric pressure
Here to find absolute pressure atmospheric pressure=92kpa and vacuum gage=35 kpa
Pabsolute pressure=Patmospehric pressure - Pvaccume
92-35=57kpa
Know more about absolute pressure
brainly.com/question/28498660
#SPJ4
Answer:
See explanation
Explanation:
a) The magnitude of intermolecular forces in compounds affects the boiling points of the compound. Neon has London dispersion forces as the only intermolecular forces operating in the substance while HF has dipole dipole interaction and strong hydrogen bonds operating in the molecule hence HF exhibits a much higher boiling point than Ne though they have similar molecular masses.
b) The boiling points of the halogen halides are much higher than that of the noble gases because the halogen halides have much higher molecular masses and stronger intermolecular forces between molecules compared to the noble gases.
Also, the change in boiling point of the hydrogen halides is much more marked(decreases rapidly) due to decrease in the magnitude of hydrogen bonding from HF to HI. The boiling point of the noble gases increases rapidly down the group as the molecular mass of the gases increases.
Answer:
carbon dioxide and oxygen