1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
mina [271]
3 years ago
10

98 Points and brainlyest for 5 Science questions please I need it doe before 2:30 ET!!!

Physics
1 answer:
Marina CMI [18]3 years ago
5 0
Picture #1:
GPE = (mass) x (gravity) x (height)
GPE = (2 kg) x (9.8 m/s²) x (40 m) = 784 joules

KE = (1/2) (mass) (speed²)
KE = (1/2) (2 kg) (5 m/s)²
KE = (1 kg) (25 m²/s²)  =  25 joules

Picture #2:
KE = (1/2) (mass) (speed²)
KE = (1/2) (2 kg) (10 m/s)²
KE = (1 kg) (100 m²/s²)  =  100 joules

Picture #3:
GPE = (mass) x (gravity) x (height)
GPE = (20 kg) x (9.8 m/s²) x (2 m) = 392 joules

KE = (1/2) (mass) (speed²)
KE = (1/2) (20 kg) (5 m/s)²
KE = (10 kg) (25 m²/s²)  =  250 joules

Picture #4:
GPE = (mass) x (gravity) x (height)
98 joules = (1 kg) x (9.8 m/s²) x (height)
Height = (98 joules) / (1 kg x 9.8 m/s²)
Height = 10 meters

Picture #5:
GPE = (mass) x (gravity) x (height)
39,200 Joules = (mass) x (9.8 m/s²) x (20 m)
Mass = (39,200 joules) / (9.8 m/s² x 20 m)
Mass = 200 kg

You might be interested in
A flatbed truck is supported by its four drive wheels, and is moving with an acceleration of 6.3 m/s2. For what value of the coe
Levart [38]

Answer:

Coefficient of static friction will be equal to 0.642  

Explanation:

We have given acceleration a=6.3m/sec^2

Acceleration due to gravity g=9.8m/sec^2

We have to find the coefficient of static friction between truck and a cabinet will

We know that acceleration is equal to a=\mu g, here \mu is coefficient of static friction and g is acceleration due to gravity

So \mu =\frac{a}{g}=\frac{6.3}{9.8}=0.642

So coefficient of static friction will be equal to 0.642

3 0
3 years ago
A basketball player is 4.22 m from
max2010maxim [7]

Answer: The height above the release point is 2.96 meters.

Explanation:

The acceleration of the ball is the gravitational acceleration in the y axis.

A = (0, -9.8m/s^)

For the velocity we can integrate over time and get:

V(t) = (9.20m/s*cos(69°), -9.8m/s^2*t + 9.20m/s^2*sin(69°))

for the position we can integrate it again over time, but this time we do not have any integration constant because the initial position of the ball will be (0,0)

P(t) = (9.20*cos(69°)*t, -4.9m/s^2*t^2 + 9.20m/s^2*sin(69°)*t)

now, the time at wich the horizontal displacement is 4.22 m will be:

4.22m = 9.20*cos(69°)*t

t = (4.22/ 9.20*cos(69°)) = 1.28s

Now we evaluate the y-position in this time:

h =  -4.9m/s^2*(1.28s)^2 + 9.20m/s^2*sin(69°)*1.28s = 2.96m

The height above the release point is 2.96 meters.

3 0
3 years ago
Read 2 more answers
How much energy to be removed to drop the temperature of 5.7kg of wood from 20degrees to 7degrees. #100points
Neporo4naja [7]

see i was trying to figure out the answer but i didn't understand it so i took the time to research and work it out but i still didn't understand i found one that was close to it and i got the same one as the other person which is D but idk if it is that type of question if it is than it is d if not then idk

5 0
3 years ago
Read 2 more answers
If the charge on the negative plate of the capacitor is 121 nano-Coulomb, how many excess electrons are on that plate? Write you
Julli [10]

Answer:

n = 756.25 giga electrons

Explanation:

It is given that,

If the charge on the negative plate of the capacitor, Q=121\ nC=121\times 10^{-9}\ C

Let n is the number of excess electrons are on that plate. Using the quantization of charges, the total charge on the negative plate is given by :

Q=ne

e is the charge on electron

n=\dfrac{Q}{e}

n=\dfrac{121\times 10^{-9}}{1.6\times 10^{-19}}

n=7.5625\times 10^{11}

or

n = 756.25 giga electrons

So, there are 756.25 giga electrons are on the plate. Hence, this is the required solution.

6 0
3 years ago
a hammer drops from a height of 8 meters. calculate the speed with which it hits the ground. show work
ioda

Answer:

12.5 m/s

Explanation:

The motion of the hammer is a free fall motion, so a uniformly accelerated motion, therefore we can use the following suvat equation:

v^2-u^2=2as

Where, taking downward as positive direction, we have:

s = 8 m is the displacement of the hammer

u = 0 is the initial velocity (it is dropped from rest)

v is the final velocity

a=g=9.8 m/s^2 is the acceleration of gravity

Solving the equation for v, we find the final velocity:

v=\sqrt{u^2+2as}=\sqrt{0+2(9.8)(8)}=12.5 m/s

So, the final speed is 12.5 m/s.

3 0
3 years ago
Other questions:
  • Which of the following is not part of the Big Bang theory? A. Gravity pulled stars into galaxies. B. In the beginning the univer
    5·2 answers
  • Explain what makes some materials better than others in how they insulate.
    6·1 answer
  • What units are used to measure force
    7·2 answers
  • Earth's core is composed primarily of _____. -iron oxides and magnesium -silicon and iron -iron and nickel -magnesium and nickel
    11·1 answer
  • A 2000 kg car slams on the brakes and slows down at a rate of -10 m/s2. How much force are the brakes applying?
    14·1 answer
  • Upon what does the energy of a quantum depend?
    8·1 answer
  • Gamma ray technology can be used to do which of the following?
    7·1 answer
  • A scientist performs an experiment and asks other scientists around the
    5·1 answer
  • Formulate your hypothesis​
    12·1 answer
  • The radius of a Circular racetrack is 50 m. if the race car can complete one lap in 20 seconds what is the speed of the race car
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!