Explanation:
A force that leads to movement of an object is known as work.
The energy present in an object due to its position in a gravitational field is known as gravitational potential energy.
Kinetic energy is the energy obtained by an object due to its motion.
For example, when Jerome is swinging on a rope then there occurs movement in the swing due to which the swing has kinetic energy.
Since, a force has been applied on the swing to make it move. Hence, a work is also done.
Therefore, we can conclude that if Jerome is swinging on a rope and transferring energy from gravitational potential energy to kinetic energy, work is being done.
Answer:

Explanation:
Electrostatic Forces
The force exerted between two point charges
and
separated a distance d is given by Coulomb's formula

The forces are attractive if the charges have different signs and repulsive if they have equal signs.
The problem described in the question locates three point charges in a straight line. The charges have the values shown below


The distance between
and
is

The distance between
and
is

We must find the value of
such that

Applying Coulomb's formula for
is

Now for 

If the total force on
is zero, both forces must be equal. Note that being q2 negative, the force on q3 is to the right. The force exerted by q1 must go to the left, thus q1 must be positive. Equating the forces we have:


Simplfying and solving for 



Answer:
The total work done by the two tugboats on the supertanker is 3.44 *10^9 J
Explanation:
The force by the tugboats acting on the supertanker is constant and the displacement of the supertanker is along a straight line.
The angle between the 2 forces and displacement is ∅ = 15°.
First we have to calculate the work done by the individual force and then we can calculate the total work.
The work done on a particle by a constant force F during a straight line displacement s is given by following formula:
W = F*s
W = F*s*cos∅
With ∅ = the angles between F and s
The magnitude of the force acting on the supertanker is F of tugboat1 = F of tugboat 2 = F = 2.2 * 10^6 N
The total work done can be calculated as followed:
Wtotal = Ftugboat1 s * cos ∅1 + Ftugboat2 s* cos ∅2
Wtotal = 2Fs*cos∅
Wtotal = 2*2.2*10^6 N * 0.81 *10³ m s *cos15°
Wtotal = 3.44*10^9 Nm = <u>3.44 *10^9 J</u>
<u />
The total work done by the two tugboats on the supertanker is 3.44 *10^9 J
Let at any instant of time the speed is vo and the angle made by the bike with the horizontal is given
now we have
component of speed in x direction given as

component of speed in y direction will be

now from above two equations we can say that here
= angle with the horizontal at any instant
and since here it is a sine curve so we know that

so we have slope of graph

V=IR (voltage equals current<span> times </span>resistance<span>). So </span>if<span> the voltage </span>increases<span>, then the </span>current increases<span> provided that the </span>resistance remains constant<span>.</span>