1. Ca → Element
2. Proton → positive
3. H2O → compound
4. Fission → nuclear decay
5. Fusion → Nuclear synthesis
6. η → Neutron
7. e → electron
8. Atomic number → no of protons in nucleus.
Explanation
1. Ca (Calcium):
Calcium is an element with the atomic number of 20. It is an alkaline earth metal. The 99% of calcium is found in our bodies, in bones, teeth.
2. Proton:
Proton is a subatomic particle and it holds the positive charge. Proton is present in the nucleus of the atom.
3. H2O (water):
Water is a chemical compound and it's chemical formula is H2O. It's called compound as it contains 2 hydrogen and 1 oxygen atoms bonded together through the covalent bond.
4. Fission:
Fission is a process in which large massive unstable nucleus splits into the smaller, less heavier and stable nuclei. The energy is re;eased in the form of radiations during this process. It's called as the radioactive decay.
5. Fusion:
Fusion is opposite of the fission reaction. As in this case the two nuclei combines to form a single large nucleus. That's why it is a nuclear synthesis process.
6. η neutron:
Neutron is a subatomic particle and it is a neutral particle which is located inside the nucleus. n is a symbol used for the neutron.
7. e Electron:
The symbol for electron is e. It's a subatomic particle with negative charge. It is found in the orbits around the nucleus.
8. Atomic Number:
Atomic number is defined as the number of protons in the nucleus of an atom. IT is represented by Z.
Answer:
The impulse applied by the stick to the hockey park is approximately 7 kilogram-meters per second.
Explanation:
The Impulse Theorem states that the impulse experimented by the hockey park is equal to the vectorial change in its linear momentum, that is:
(1)
Where:
- Impulse, in kilogram-meters per second.
- Mass, in kilograms.
- Initial velocity of the hockey park, in meters per second.
- Final velocity of the hockey park, in meters per second.
If we know that
,
and
, then the impulse applied by the stick to the park is approximately:
![I = (0.2\,kg)\cdot \left(35\,\hat{i}\right)\,\left[\frac{m}{s} \right]](https://tex.z-dn.net/?f=I%20%3D%20%280.2%5C%2Ckg%29%5Ccdot%20%5Cleft%2835%5C%2C%5Chat%7Bi%7D%5Cright%29%5C%2C%5Cleft%5B%5Cfrac%7Bm%7D%7Bs%7D%20%5Cright%5D)
![I = 7\,\hat{i}\,\left[\frac{kg\cdot m}{s} \right]](https://tex.z-dn.net/?f=I%20%3D%207%5C%2C%5Chat%7Bi%7D%5C%2C%5Cleft%5B%5Cfrac%7Bkg%5Ccdot%20m%7D%7Bs%7D%20%5Cright%5D)
The impulse applied by the stick to the hockey park is approximately 7 kilogram-meters per second.
The answer is 60 mph.
The speed (v) is distance (d) per time (t): v = d/t
Car A:
v1 = ?
t1 = 2 h
d1 = ?
___
v1 = d1/t1
d1 = v1 * t1
Car B:
v2 = ?
t2 = 1.5 h
d2 = ?
___
v2 = d2/t2
d2 = v2 * t2
<span>Two cars traveled equal distances:
d1 = d2
</span>v1 * t1 = v2 * t2
<span>Car B traveled 15 mph faster than Car A:
v2 = v1 + 15
</span>v1 * t1 = v2 * t2
v2 = v1 + 15
________
v1 * 2 = (v1 + 15) * 1.5
2v1 = 1.5v1 + 22.5
2v1 - 1.5v1 = 22.5
0.5v1 = 22.5
v1 = 22.5/0.5
v1 = 45 mph
v2 = v1 + 15
v2 = 45 + 15
v2 = 60 mph
A 50w motor can do 500w in 5 seconds
The higher the thermal energy the faster the conduction convection and radiation take place as the particles have more kinetic (movement) energy