Starting making jokes and rapping
Answer:
The amount of time for the whole journey is 8 hours.
Explanation:
A truck covered 2/7 of a journey at an average speed of 40 mph. Representing 1 the total of the trip traveled, then the rest of the distance traveled is calculated as: 
So if the truck covered the remaining 200 miles at
, this means that
of the trip represents the 200 miles. So, to calculate the total distance traveled by the truck, you apply the following rule of three: if
of the route represents 200 miles, the integer 1 (which represents the total of the route), how many miles are they?

miles= 280
So the total distance traveled is 280 miles. Since speed is the relationship between the space traveled by an object and the time used for it (
), then if the average of the entire trip was 35 mph and the distance traveled 280 miles, the time is calculated as:

time= 8 h
<u><em>
The amount of time for the whole journey is 8 hours.</em></u>
<u><em /></u>
Answer:
2.73×10¯³⁴ m.
Explanation:
The following data were obtained from the question:
Mass (m) = 0.113 Kg
Velocity (v) = 43 m/s
Wavelength (λ) =?
Next, we shall determine the energy of the ball. This can be obtained as follow:
Mass (m) = 0.113 Kg
Velocity (v) = 43 m/s
Energy (E) =?
E = ½m²
E = ½ × 0.113 × 43²
E = 0.0565 × 1849
E = 104.4685 J
Next, we shall determine the frequency. This can be obtained as follow:
Energy (E) = 104.4685 J
Planck's constant (h) = 6.63×10¯³⁴ Js
Frequency (f) =?
E = hf
104.4685 = 6.63×10¯³⁴ × f
Divide both side by 6.63×10¯³⁴
f = 104.4685 / 6.63×10¯³⁴
f = 15.76×10³⁴ Hz
Finally, we shall determine the wavelength of the ball. This can be obtained as follow:
Velocity (v) = 43 m/s
Frequency (f) = 15.76×10³⁴ Hz
Wavelength (λ) =?
v = λf
43 = λ × 15.76×10³⁴
Divide both side by 15.76×10³⁴
λ = 43 / 15.76×10³⁴
λ = 2.73×10¯³⁴ m
Therefore, the wavelength of the ball is 2.73×10¯³⁴ m.
Answer:
C. Takes heat in, does work, and loses energy heat.
Explanation:
Heat engine is a system makes use of thermal energy (heat) to in order to do mechanical work.
This occurs by converting the heat into mechanical energy. This energy is then used to do work.
The key characteristic of a heat engine is that the substance with which work is done by, goes from a higher temperature to a lower temperature.
Hence, it loses heat as it does work.
Answer:
(A) 10132.5Pa
(B)531kJ of energy
Explanation:
This is an isothermal process. Assuming ideal gas behaviour then the relation P1V1 = P2V2 holds.
Given
m = 10kg = 10000g, V1 = 0.1m³, V2 = 1.0m³
P1 = 101325Pa. M = 102.03g/mol
P2 = P1 × V1 /V2 = 101325 × 0.1 / 1 = 10132.5Pa
(B) Energy is transfered by the r134a in the form of thw work done in in expansion
W = nRTIn(V2/V1)
n = m / M = 10000/102.03 = 98.01mols
W = 98.01 × 8.314 × 283 ×ln(1.0/0.1)
= 531kJ.