Answer: a. 0.26mol
b. 0.000479mol
c. 1.12mol
Explanation: Please see attachment for explanation
Answer: Total pressure inside of a vessel is 0.908 atm
Explanation:
According to Dalton's law, the total pressure is the sum of individual partial pressures. exerted by each gas alone.

= partial pressure of nitrogen = 0.256 atm
= partial pressure of helium = 203 mm Hg = 0.267 atm (760mmHg=1atm)
= partial pressure of hydrogen =39.0 kPa = 0.385 atm (1kPa=0.00987 atm)
Thus 
=0.256atm+0.267atm+0.385atm =0.908atm
Thus total pressure (in atm) inside of a vessel is 0.908
This element is found in group 3A, period 3
<h3>Further explanation
</h3>
The maximum number of electrons that can be filled in the nth electron shell is 2n²(n=shell)
-
K shell (n = 1) maximum 2 x 1² = 2 electrons
- L shell (n = 2) maximum 2 x 2² = 8 electrons
- M shell (n = 3) maximum 2 x 3² = 18 electrons
- N shell (n = 4) maximum 2 x 4² = 32 electrons
Electron configuration of element X : 2.8.3 , so :
K shell = 2 ⇒1s²
L shell = 8⇒2s²2p⁶
M shell = 3⇒ 3s²3p¹
Block p: group 13-18 (has a 2p-6p configuration), also called a representative element because it includes metals, non-metals and metalloids
The outer shell 3s²3p¹ : located in group 3A and period 3
group⇒valence electron ⇒3
period⇒the greatest value of the quantum number n⇒3