Answer:
(1) I shifts toward product and II shifts toward reactant.
Explanation:
Increasing the temperature of an endothermic reaction (∆H is positive) shifts the equilibrium position to the right thus favoring product formation.
Increasing the temperature of an exothermic reaction (∆H is negative) shifts the equilibrium position to the left thus favoring the backward reaction.
I am very sure that the answer is C. Hope it’s right :)
Answer:
shivering
hair on the body standing up
goosebump forming
Explanation:
The processes that help the body warm-up from the available options include <em>the shivering of the body</em>, <em>formation of goosebumps on the skin</em>, and <em>the standing up of hairs on the body.</em>
When the temperature of the body falls below the setpoint or the environment is cold, a homeostatic response is triggered and a signal is sent from the control center to the muscles of the body. <u>The muscles start shaking in order to generate heat to raise the temperature of the body</u>. At the same time, <u>the tiny muscles at the base of the hairs on the skin contract and pull the hairs erect, causing goosebumps in the process.</u>
Answer:
Explanation:
Step 1: Data given
The equilibrium constant, Kc, for the following reaction is 4.76 * 10^-4 at 431 K
The equilibrium concentration of Cl2(g) is 0.233 M
Step 2: The balanced equation
PCl5(g) ⇄ PCl3(g) + Cl2(g)
Step 3: The initial concentration
[PCl5]= Y M
[PCl] = 0M
[Cl2] = 0M
Step 4: Calculate the concentration at equilibrium
[PCl5] = Y + X M = Y - 0.233 M
[PCl]= XM = 0.233 M
[Cl2]= XM = 0.233 M
Step 5: Define Kc
Kc = [Cl2]* [PCl3] / [PCl5]
4.76 * 10^-4 = 0.233² / (Y -0.233)
0.000476 = 0.05429 / (Y - 0.233)
Y - 0.233 = 0.05429 / 0.000476
Y - 0.233 = 114.05 M
Y = 114.283 M = the initial concentration
The concentration of PCl5 at the equilibrium is 114.05 M
Convection currents in the mantle, I got it right on a p e x