The conductor is the metal wire inside or encased in the insulator, which as stated covers or insulates the conductor.
Answer:
The object will sink in the liquid in beaker 1.
The object will float in the liquid in beaker 2
Explanation:
The density of an object relative to the density of a fluid determines if the object floats or sink in a fluid. The density of a material is the measure of the amount of mass of that material packed into a unit volume of that material.
For the beaker 1, the liquid in this beaker has a density of 0.5 g/cc, which is lesser than the density of the object (0.85 g/cc). This means that the object will add more mass than there should be to the volume of the space it displaces within the field. This results in the object sinking in the fluid.
For beaker 2, the liquid in this beaker has a density of 1 g/cc, which is more than the density of the object (0.85 g/cc). This means that the object will add less mass than there should be to the volume of the space it displaces within the field. This results in the object floating in the fluid.
Answer:
The speed of the laser light in the cable, 
Explanation:
It is given that,
Wavelength of Argon laser, 
Refractive index, n = 1.46
Let
is the speed of the laser light in the cable. The speed of light in a medium is given by :



or

So, the speed of the laser light is
. Hence, this is the required solution.
This happens because of the earth rotating around the sun. So we see different constellations for different seasons.
Answer:
Explanation:
Using Snell's law
n₁ sinθ₁ = n₂ sinθ₂
for 420 nm wavelength
where n₁ = 1.00 ( refractive index of air) and θ₁ = 30° n₂ = 1.660
1.00 × sin 30° = 1.660 sinθ₂
sinθ₂ = 0.3012
θ₂ = sin⁻¹ 0.3012 = 17.53°
for 690 nm wavelength
n₁ sinθ₁ = n₂ sinθ₂
sinθ₂ = 0.5 / 1.630
θ₂ = sin⁻¹ 0.3067 = 17.86°
the angle between the two beam = 17.863° - 17.53° = 0.333°