We have been given the condition that carbon makes up 35%
of the mass of the substance and the rest is made up of oxygen. With this, it
can be concluded that 65% of the substance is made up of oxygen. If we let x be
the mass of oxygen in the substance, the operation that would best represent
the scenario is,
<span> x = (0.65)(5.5 g)</span>
<span> <em> </em><span><em>x =
3.575 g</em></span></span>
Answer:
Explanation:
Function. The mitochondrion is the site of ATP synthesis for the cell. The number of mitochondria found in a cell are therefore a good indicator of the cell's rate of metabolic activity; cells which are very metabolically active, such as hepatocytes, will have many mitochondria.
Answer:
The empirical formula is Ag2O.
The empirical formula is Ag2O.Explanation:
The empirical formula is Ag2O.Explanation:The empirical formula is the simplest whole-number ratio of atoms in a compound.
The empirical formula is Ag2O.Explanation:The empirical formula is the simplest whole-number ratio of atoms in a compound.The ratio of atoms is the same as the ratio of moles. So our job is to calculate the molar ratio of Ag to 2O.
do the steps ...
To get this into an integer ratio, we divide both numbers by the smaller value.
From this point on, I like to summarize the calculations in a table.
ElementAgMass/gXMolesXllRatiomllIntegers
—————————————————−———mAgXXXm7.96Xm0.07377Xll2.00mmm2
mlOXXXXl0.59mm0.0369Xml1mmmml1
There are 2 mol of Ag for 1 mol of O.
In order to solve this, we need to know the standard cell potentials of the half reaction from the given overall reaction.
The half reactions with their standard cell potentials are:
<span>2ClO−3(aq) + 12H+(aq) + 10e- = Cl2(g) + 6H2O(l)
</span><span>E = +1.47
</span>
<span>Br(l) + 2e- = 2Br-
</span><span>E = +1.065
</span>
We solve for the standard emf by subtracting the standard emf of the oxidation from the reducation, so:
1.47 - 1.065 = 0.405 V
Answer:
- <u>Hey </u><u>mate </u>
- <u>I </u><u>hope </u><u>it </u><u>helps </u>
Explanation:
<h3>Removing Energy: Removing energy will cause the particles in a liquid to begin locking into place. A. Boiling and Evaporation: Evaporation is the change of a substance from a liquid to a gas. Boiling is the change of a liquid to a vapor, or gas, throughout the liquid.</h3>
<h2>PLZ
<u>MARK </u><u>ME </u><u>AS </u><u>BRAIN </u><u>LIST </u><u /></h2>
<u>THANKS </u><u />