Answer:
The maximum potential energy of the child will be maximum at the two end points.
The maximum kinetic energy of the <em>child </em>occurs at the lowest point of the swing.
The potential energy of the child depends on the displacement of the child.
P.E = mgh
The maximum height attained occurs at the two end points of her swing motion.
Thus, the maximum potential energy of the child will be maximum at the two end points.
The kinetic energy of the child depends on the velocity of the child
K.E = ¹/₂mv²
The maximum velocity of the swing occurs at the lowest point of the swing.
Thus, the maximum kinetic energy of the child occurs at the lowest point of the swing.
Hope this helps!
Answer:
A catalyst speeds up a chemical reaction, without being consumed by the reaction. It increases the reaction rate by lowering the activation energy for a reaction. ... Remember that with a catalyst, the average kinetic energy of the molecules remains the same but the required energy decreases
Explanation:
...
hope that is helpful
Answer: V = 33.9 L
Explanation: We will use Charles Law to solve for the new volume.
Charles Law is expressed in the following formula. Temperatures must be converted in Kelvin.
V1 / T1 = V2 / T2 then derive for V2
V2 = V1 T2 / T1
= 35 L ( 308 K ) / 318 K
= 33.9 L
Answer: A chemical process must occur and then changes between the state of the reactants and the state of the products can be determined
Explanation: Enthalpy represents the sum of the energy of the system with the product of the pressure and volume of that system. As a thermodynamic property, it expresses the ability to release heat from the system. In fact, enthalpy tells us how much heat and work has changed during the chemical reaction under constant pressure. When measuring, measurements of the difference in enthalpy between the two states of the system is performed, before and after the chemical reaction, since total enthalpy can not be measured. This measurement of the enthalpy change can tell us, for example, whether the heat was released from the system during the reaction, or the system absorbed the heat.