Answer:
4989600 ways
Step-by-step explanation:
From the question,
The word MATHEMATICS can be arranged in n!/(r₁!r₂!r₃!)
⇒ n!/(r₁!r₂!r₃!) ways
Where n = total number of letters, r₁ = number of times M appears r₂ = number of times A appears, r₃ = number of times T appears.
Given: n = 11, r₁ = 2, r₂ = 2, r₃ = 2
Substitute these value into the expression above
11!/(2!2!2!) = (39916800/8) ways
4989600 ways
Hence the number of ways MATHEMATICS can be arranged without duplicate is 4989600 ways
We can solve this problem by referring to the standard
probability distribution tables for z.
We are required to find for the number of samples given the
proportion (P = 5% = 0.05) and confidence level of 95%. This would give a value
of z equivalent to:
z = 1.96
Since the problem states that it should be within the true
proportion then p = 0.5
Now we can find for the sample size using the formula:
n = (z^2) p q /E^2
where,
<span> p = 0.5</span>
q = 1 – p = 0.5
E = estimate of 5% = 0.05
Substituting:
n = (1.96^2) 0.5 * 0.5 / 0.05^2
n = 384.16
<span>Around 385students are required.</span>
Answer:
2100
Step-by-step explanation:
Multiply the rate by the time and the weight to find the amount per week.
(2.5%/day)(6 tons)(2000 lb/ton)(7 days/week) = 2100 lb/week