The general formula to calculate the work is:

where F is the force, d is the displacement of the couch, and
is the angle between the direction of the force and the displacement. Let's apply this formula to the different parts of the problem.
(a) Work done by you: in this case, the force applied is parallel to the displacement of the couch, so
and
, therefore the work is just equal to the product between the horizontal force you apply to push the couch and the distance the couch has been moved:

(b) work done by the frictional force: the frictional force has opposite direction to the displacement, therefore
and
. Therefore, we must include a negative sign when we calculate the work done by the frictional force:

(c) The work done by gravity is zero. In fact, gravity (which points downwards) is perpendicular to the displacement of the couch (which is horizontal), therefore
and
: this means
.
(d) Work done by the net force:
The net force is the difference between the horizontal force applied by you and the frictional force:

And the net force is in the same direction of the displacement, so
and
and the work done is

Answer:
Final speed of the car, v = 24.49 m/s
Explanation:
It is given that,
Initial velocity of the car, u = 0
Acceleration, 
Time taken, t = 7.9 s
We need to find the final velocity of the car. Let it is given by v. It can be calculated using first equation of motion as :

v = 24.49 m/s
So, the final speed of the car is 24.49 m/s. Hence, this is the required solution.
Sunlight, because it provides a source of energy is the answer because plants also provide a food source (please put as brainliest answer)
Total distance covered = 384 Km
Total time taken to travel from A to B = 8 hours [from 8 am to 4 pm, there are 8 hours]
We know, Average speed = Total Distance Travelled/ Total Time Taken
Therefore, average speed = 384 Km/8 h = 384000m/8×60×60s =(384000/28800)m/s
= 13.3 m/s
Answer is 13.3 m/s
Answer:
d=360 miles
Donna lives 360 miles from the mountains.
Explanation:
Conceptual analysis
We apply the formula to calculate uniform moving distance[
d=v*t Formula (1)
d: distance in miles
t: time in hours
v: speed in miles/hour
Development of problem
The distance Donna traveled to the mountains is equal to the distance back home, equal to d,then,we pose the kinematic equations for d, applying formula 1:
travel data to the mountains: t₁= 8 hours , v=v₁
d= v₁*t₁=8*v₁ Equation (1)
data back home : t₂=4hours , v=v₂=v₁+45
d=v₂*t₂=(v₁+45)*4=4v₁+180 Equation (2)
Equation (1)=Equation (2)
8*v₁=4v₁+180
8*v₁-4v₁=180
4v₁=180
v₁=180÷4=45 miles/hour
we replace v₁=45 miles/hour in equation (1)
d=8hour*45miles/hour
d=360 miles