The rms current in the transmission lines is I = 487.18 A.
The root-imply-rectangular (rms) voltage of a sinusoidal supply of electromotive force is used to represent the source. it is the rectangular root of the time average of the voltage squared.
Alternating-present day circuits. the root-imply-square (rms) voltage of a sinusoidal source of electromotive force is used to symbolize the supply. it's far the square root of the time average of the voltage squared.
Electric power is by using present day or the waft of electric fee and voltage or the capacity of rate to deliver electricity. A given cost of power can be produced by using any combination of contemporary and voltage values
power = 38 M watt
rms voltage = 78 K v
power = IV
I = power/V
I = (38 * 1000000)/78*1000
I = 487.18 A.
Learn more about rms current here:-brainly.com/question/20913680
#SPJ4
Hi there!
We can use the kinematic equation:

vf = Final velocity (? m/s)
vi = initial velocity (0 m/s, dropped from rest)
a = acceleration (due to gravity, 9.8 m/s²)
d = distance (9.8 m)
Simplify the equation to solve for vf:

Substitute in the given values:

<span>During
adverse weather conditions such as rain or fog, drivers should take
action accordingly by turning on their headlights, slowing down and
increasing following distance. Adverse weather means that you are driving in difficult and dangerous conditions. Increasing following distance will help you to maintain safe driving and avoid tailgating. </span>
Answer:
initial magnetic field 1.306 T
Explanation:
We have given area of the conducting loop 
Emf induced = 1.2 volt
Initial magnetic field B = 0.3 T
Time dt = 0.087 sec
We know that induced emf is given by 


So initial magnetic field = 1.606-0.3= 1.306 T
Are breathing hard. This is because cardiovascular exercise makes the heart beat faster which in turn creates a need for more air.