<span>To answer this problem, we use balancing of forces: x and y components to determine the tension of the rope.
First, the vertical component of tension (Tsin theta) is equal to the weight of the object.
T * sin θ = mg =</span> 1.55 * 9.81 <span>
T * sin θ = 15.2055
Second, the horizontal component of tension (t cos theta) is equal to the force of the wind.
T * cos θ = 13.3
Tan θ = sin </span>θ / cos θ = 15.2055/13.3 = 1.143
we can find θ that is equal to 48.82.
T then is equal to 20.20 N
90 percent a day to keep things running smoothly
Answer:
1027 N/C
3.42 x 10⁻⁶ T
Explanation:
I = Intensity of electromagnetic field = 1400 W/m²
E₀ = Maximum value of electric field
Intensity of electromagnetic field is given as
I = (0.5) ε₀ E₀² c
1400 = (0.5) (8.85 x 10⁻¹²) (3 x 10⁸) E₀²
E₀ = 1027 N/C
B₀ = maximum value of magnetic field
using the equation
E₀ = B₀ c
1027 = B₀ (3 x 10⁸)
B₀ = 3.42 x 10⁻⁶ T
Kinetic energy means movement. This means that the more something moves, the more kinetic energy it will have! And the faster something moves, the more heat it produces! Altogether, this means that the more Kinetic energy something has, the hotter it will be!
The opposite is also true. The less something moves, it will have less Kinetic energy and the colder it will get.
If you're having trouble understanding this, think of it like how the particles in water move compared to how the particles in ice move. The particles in water are free flowing and can move wherever they want. If they get colder, they won't move as much, and eventually they'll stop flowing around, forming a solid and staying colder than the water will get.
Answer:
2, 6
Explanation:
2 because if you cut down more trees you will have less items to help collect co2
6 because if you have more manufracturing more gasses will be release and moe carbon dioxcide in the air so it will slowly kill the ozone layer.