Explanation:
Flourine has atomic number of 9 and hence 9 electrons in its neutral state. The full electronic configuration is given as;
1s2 2s2 2p5
Carbon has atomic number of 6 and hence 6 electrons in it's neutral state. The noble gas notation as the following format;
[closest noble gas before the element] remaining electrons
The nearest noble gas to carbon is Helium, the noble gas notation is given as;
[He] 2s4
The products are on the right side of the equation. For this one it would be 2AlPO4 + 3CaSO4
Answer:
Multiply the number of moles in the product by the molecular weight of the product to determine the theoretical yield.
Explanation:
For example:
If you created 0.5 moles of Aluminium Oxide the molecular weight of Aluminium Oxide is 101.96g/mole, so you would get 50.98g as the theoretical yield.
So multiply,..
101.96x0.5= 50.98
This is the correct way to calculate the theoretical yield
......
Reaction of sodium with water
Sodium metal reacts rapidly with water to form a colourless solution of sodium hydroxide (NaOH) and hydrogen gas (H2). The resulting solution is basic because of the dissolved hydroxide. The reaction is exothermic. During the reaction, the sodium metal may well become so hot that it catches fire and burns with a characteristic orange colour. The reaction is slower than that of potassium (immediately below sodium in the periodic table), but faster than that of lithium (immediately above sodium in the periodic table).
2Na(s) + 2H2O → 2NaOH(aq) + H2(g)
Answer:
hope this helps
Explanation:
glycosidic bond
A covalent bond formed between a carbohydrate molecule and another molecule (in this case, between two monosaccharides) is known as a glycosidic bond (Figure 4). Glycosidic bonds (also called glycosidic linkages) can be of the alpha or the beta type.