The specific heat capacity of this chunk of metal is equal to 0.32 J/g°C.
<u>Given the following data:</u>
- Quantity of energy = 400 Joules
- Initial temperature = 20°C
To determine the specific heat capacity of this chunk of metal:
<h3>
The formula for quantity of heat.</h3>
Mathematically, quantity of heat is given by the formula;

<u>Where:</u>
- Q represents the quantity of heat.
- m represents the mass of an object.
- c represents the specific heat capacity.
- ∅ represents the change in temperature.
Making c the subject of formula, we have:

Substituting the given parameters into the formula, we have;

Specific heat, c = 0.32 J/g°C.
Read more on specific heat here: brainly.com/question/2834175
Answer:
I'm sorry didn't understand
Answer: 1. P1V1 = P2V2
2. P stands for pressure
3. Units for Pressure are atm and Pa
4. V stands for volume
5. Units for volume is in mL
Explanation: Boyle's Law is a gas law that states the relationship between pressure and volume of a gas.
B. Nuclear fission reactions are slowed down as well.
Neutron moderation is a substance which slows down neutron. In some reaction moderator is same as coolant.
This is also used to slow down nuclear fission reaction and continue chain reactions.
The collision between neutron and nuclei is more elastic and more neutrons will be slowed due to size of the neutron.
Learn more at brainly.com/question/24371385
A gas made up of atoms escapes through a pinhole 0.225times as fast as gas. Write the chemical formula of the gas.
Answer:
Explanation:
To solve this problem, we must apply Graham's law of diffusion. This law states that "the rate of diffusion or effusion of a gas is inversely proportional to the square root of its molecular mass at constant temperature and pressure".
Mathematically;

r₁ is the rate of diffusion of gas 1
r₂ is the rate of diffusion of gas 2
m₁ is the molar mass of gas 1
m₂ is the molar mass of gas 2
let gas 2 be the given H₂;
molar mass of H₂ = 2 x 1 = 2gmol⁻¹
rate of diffusion is 0.225;
i .e r1/r2 = 0.225
0.225 = √2 / √ m₁
0.225 = 1.414 / √ m₁
√ m₁ = 6.3
m₁ = 6.3² = 39.5g/mol
The gas is likely Argon since argon has similar molecular mass