Answer:
a) 31.4 m/s
b) 50.2 m
Explanation:
a) When an object is free falling, its speed is determined by the gravity force giving it acceleration. Equation for the velocity of free fall started from the rest is:
v = g • t
g - is gravitational acceleration which is 9.81 m/s^2, sometimes rounded to 10
t - is the time of free fall
So:
v = 9.81 m/s^2 • 3.2
v = 31.4 m/s ( if g is rounded to 10, then the velocity is 10 • 3.2 = 32 m/s)
b) To determine the distance crossed in free fall we use the equation:
s = v0 + gt^2/2
v0 - is the starting velocity (since object started fall from rest, its v0 is 0)
s = gt^2/2
s = 9.81 m/s^2 • 3.2^2 / 2
s = 50.2 m (if we round g to 10 then the distance is 10 • 3.2^2/2 = 51.2 meters)
Answer:
0.0238 centimetre
Explanation:
multiply the length value by 100
Answer:
The magnitude of the velocity of glider B is 0.2m/s and the direction is the negative direction
Explanation:
Inelastic Collision
Given data
mass of glider A m1= 0.125kg
initial velocity u1=0
final velocity v1= 0.600 m/s
mass of glider B m2= 0.375kg
initial velocity u2=0
final velocity v2=?
We know that the expression for the conservation of momentum is given as
m1u1+m2u2=m1v1+m2v2
since u1=u2=u=0m/s
u(m1+m2)=m1v1+m2v2
substituting we have
0(0.125+0.0375)=0.125*0.6+0.375*v2
0=0.075+0.375v2
0.375v2=-0.075
v2=-0.075/0.375
v2=-0.2m/s
The magnitude of the velocity of glider B is 0.2m/s and the direction is the negative direction
Answer: I looked it up and it says something about the waves traveling in a solid but I don’t know if that’s correct.