Answer: Attached below is the well written question and solution
answer:
i) Attached below
ii) similar parameter = 
Explanation:
Using ; L as characteristic length and Vo as reference velocity
i) Nondimensionalize the equations
ii) Identifying similarity parameters
the similar parameters are = 
Attached below is the detailed solution
Answer:
Some general principles are given below in the explanation segment.
Explanation:
Sewage treatment seems to be a method to extract pollutants from untreated sewage, consisting primarily of domestic sewage including some solid wastes.
<u>The principles are given below:</u>
- Unless the components throughout the flow stream become greater than the ports or even the gaps throughout the filter layer, those holes would be filled as either a result of economic detection.
- The much more common element of filtration would be the use of gravity to extract a combination.
- Broadcast interception or interference.
- Inertial influence.
- Sieving seems to be an excellent method to distinguish particulates.
Answer:
True
Explanation:
Dual home host - it is referred to as the firewall that is incorporated with two or more networks. out of these two networks, one is assigned to the internal network and the other is for the network. The main purpose of the dual-homed host is to ensure that no Internet protocol traffic is induced between both the network.
The most simple example of a dual-homed host is a computing motherboard that is provided with two network interfaces.
Answer: i can see if i can what is the problem
Explanation:
Answer:
Part 1: It would be a straight line, current will be directly proportional to the voltage.
Part 2: The current would taper off and will have negligible increase after the voltage reaches a certain value. Graph attached.
Explanation:
For the first part, voltage and current have a linear relationship as dictated by the Ohm's law.
V=I*R
where V is the voltage, I is the current, and R is the resistance. As the Voltage increase, current is bound to increase too, given that the resistance remains constant.
In the second part, resistance is not constant. As an element heats up, it consumes more current because the free sea of electrons inside are moving more rapidly, disrupting the flow of charge. So, as the voltage increase, the current does increase, but so does the resistance. Leaving less room for the current to increase. This rise in temperature is shown in the graph attached, as current tapers.