Answer: 33.35 minutes
Explanation:
A(t) = A(o) *(.5)^[t/(t1/2)]....equ1
Where
A(t) = geiger count after time t = 100
A(o) = initial geiger count = 400
(t1/2) = the half life of decay
t = time between geiger count = 66.7 minutes
Sub into equ 1
100=400(.5)^[66.7/(t1/2)
Equ becomes
.25= (.5)^[66.7/(t1/2)]
Take log of both sides
Log 0.25 = [66.7/(t1/2)] * log 0.5
66.7/(t1/2) = 2
(t1/2) = (66.7/2 ) = 33.35 minutes
Answer:
4.8°C
Explanation:
The rate of heat transfer through the wall is given by:
Assumptions:
1) the system is at equilibrium
2) the heat transfer from foam side to interface and interface to block side is equal. There is no heat retention at any point
3) the external surface of the wall (concrete block side) is large enough that all heat is dissipated and there is no increase in temperature of the air on that side
temperature at the interface
Solving for will give the temperature at the interface:
Answer:
YES
Explanation:
values other than five will work
Answer:
15.64 MW
Explanation:
The computation of value of X that gives maximum profit is shown below:-
Profit = Revenue - Cost
= 15x - 0.2x 2 - 12 - 0.3x - 0.27x 2
= 14.7x - .47x^2 - 12
After solving the above equation we will get maximum differentiate for profit that is
14.7 - 0.94x = 0
So,
x = 15.64 MW
Therefore for computing the value of X that gives maximum profit we simply solve the above equation.