Answer:
(a) BP = 11.99 KPa
(b) h = 2 m
Explanation:
(a)
Since, the fluid pressure and blood pressure balance each other. Therefore:
BP = ρgh
where,
BP = Blood Pressure
ρ = density of fluid = 1020 kg/m³
g = acceleration due to gravity = 9.8 m/s²
h = height of fluid = 1.2 m
Therefore,
BP = (1020 kg/m³)(9.8 m/s²)(1.2 m)
<u>BP = 11995.2 Pa = 11.99 KPa</u>
(b)
Again using the equation:
P = ρgh
with data:
P = Gauge Pressure = 20 KPa = 20000 Pa
ρ = density of fluid = 1020 kg/m³
g = acceleration due to gravity = 9.8 m/s²
h = height of fluid = ?
Therefore,
20000 Pa = (1020 kg/m³)(9.8 m/s²)h
<u>h = 2 m</u>
Answer:
coupling is in tension
Force = -244.81 N
Explanation:
Diameter of Hose ( D1 ) = 35 mm
Diameter of nozzle ( D2 ) = 25 mm
water gage pressure in hose = 510 kPa
stream leaving the nozzle is uniform
exit speed and pressure = 32 m/s and atmospheric
<u>Determine the force transmitted by the coupling between the nozzle and hose </u>
attached below is the remaining part of the detailed solution
Inlet velocity ( V1 ) = V2 ( D2/D1 )^2
= 32 ( 25 / 35 )^2
= 16.33 m/s
Answer:
ICP -OES stand for inductively coupled plasma optical emission spectroscopy
Explanation:
It is techniques that known as trace level technique which help to identify and quantify the element present in sample by using spectra emission.
The analysis process include desolvates, ionization and excitation of the sample. The sample is identify by analyzing the emission line from it and quantify by analyzing the intensity of same emission lines.
Answer:
B. G = 333 mS, B = j250 mS
Explanation:
impedance of a circuit element is Z = (3 + j4) Ω
The general equation for impedance
Z = (R + jX) Ω
where
R = resistance in ohm
X = reactance
R = 3Ω X = 4Ω
Conductance = 1/R while Susceptance = 1/X
Conductance = 1/3 = 0.333S
= 333 mS
Susceptance = 1/4 = 0.25S
= 250mS
The right option is B. G = 333 mS, B = j250 mS