The answer is 0.000824653J
You need to use the formula Mass * Velocity^2 over 2
The characteristics of the projectile launch allows to find the results for the questions about the movement of the ball are:
-
In the attached we see the vertical speed decreases with height and the curve is of the parabolic type.
- In the movement is several dimensions, each one is independent of the others, the movement in the x axis does not affect the movement in the y axis.
Kinematics studies the motion of bodies looking for relationships between position, velocity and acceleration. In the case of vertical and projectiles launch the acceleration on the vertical axis is the acceleration of gravity directed downward.
In the attachment we can see the position of the ball for two distances in the case of projectile launching.
We can see that the speed of the ball decreases with height according to the relation
y = go t - ½ g t²
Where y is the height, g is the initial vertical velocity, g is the acceleration of gravity and t is time.
In all movements in various dimensions we assume that each movement in an .
axis is independent
In the case of projectile launching, on the vertical axis there is an acceleration of gravity and on the horizontal axis there is no acceleration, the only parameter that this gives the two movements is the time, which is a scalar.
In conclusion, using the characteristics of the projectile launch, we can find the results for the questions about the movement of the ball are:
- In the movement is several dimensions, each one is independent of the others, the movement in the x axis does not affect the movement in the y axis.
- In the attached we see the vertical speed decreases with height and the curve is of the parabolic type.
Learn more about projectile launch here: brainly.com/question/24888457
As per kinematics equation we are given that

now we are given that
a = 2.55 m/s^2


now we need to find x
from above equation we have



so it will cover a distance of 93.2 m
Seconds squared is the time unit of acceleration. It represents the change in distance units per second per second. For example, 3 m/sec² means a distance covering 3 meters in the first second, then 9 meters in the 2nd second, and 37 meters in the third second. (3^1, 3^2, 3^3).
Acceleration is part of Newton's 2nd law: force = mass x acceleration. Units of work: joule = kg·m²/s², and power: watts = kg·m²/s³ all contain accelerations.
-- Heat is a form of energy.
-- Joule is the SI unit of energy.
ergo
-- Joule is a unit of heat.
'Degree Celsius' and 'Kelvin' are units of temperature.
Heat and temperature are different things.
We won't go there right now.