Answer:
Molality = 1.428m
Explanation:
Molality, m, is an unit of concentration defined as the ratio between moles of solute and kg of solvent:
Molality: Moles solute / kg solvent.
In the problem, water is the solvent (Is the compound in the higher quantity) whereas NaNO₃ is the solute.
Moles of solute: 0.3355moles NaNO₃.
Kg solvent:

Thus, molality of the solution is:
Molality = 0.3355 moles NaNO₃ / 0.2350kg
<h3>Molality = 1.428m</h3>
<u>Answer:</u> The enthalpy of the formation of
is coming out to be -410.8 kJ/mol.Z
<u>Explanation:</u>
Enthalpy change is defined as the difference in enthalpies of all the product and the reactants each multiplied with their respective number of moles. It is represented as 
The equation used to calculate enthalpy change is of a reaction is:
![\Delta H^o_{rxn}=\sum [n\times \Delta H^o_f(product)]-\sum [n\times \Delta H^o_f(reactant)]](https://tex.z-dn.net/?f=%5CDelta%20H%5Eo_%7Brxn%7D%3D%5Csum%20%5Bn%5Ctimes%20%5CDelta%20H%5Eo_f%28product%29%5D-%5Csum%20%5Bn%5Ctimes%20%5CDelta%20H%5Eo_f%28reactant%29%5D)
For the given chemical reaction:

The equation for the enthalpy change of the above reaction is:
![\Delta H^o_{rxn}=[(1\times \Delta H^o_f_{(C_2H_2(g))})+(4\times \Delta H^o_f_{(H_2O(g))})]-[(2\times \Delta H^o_f_{(CO_2(g))})+(5\times \Delta H^o_f_{(H_2(g))})]](https://tex.z-dn.net/?f=%5CDelta%20H%5Eo_%7Brxn%7D%3D%5B%281%5Ctimes%20%5CDelta%20H%5Eo_f_%7B%28C_2H_2%28g%29%29%7D%29%2B%284%5Ctimes%20%5CDelta%20H%5Eo_f_%7B%28H_2O%28g%29%29%7D%29%5D-%5B%282%5Ctimes%20%5CDelta%20H%5Eo_f_%7B%28CO_2%28g%29%29%7D%29%2B%285%5Ctimes%20%5CDelta%20H%5Eo_f_%7B%28H_2%28g%29%29%7D%29%5D)
We are given:

Putting values in above equation, we get:
![81.1=[(1\times (226.7)})+(4\times (-241.8))]-[(2\times \Delta H^o_f_{(CO_2(g))})+(5\times (0))]\\\\\Delta H^o_f_{(CO_2(g))}=-410.8kJ/mol](https://tex.z-dn.net/?f=81.1%3D%5B%281%5Ctimes%20%28226.7%29%7D%29%2B%284%5Ctimes%20%28-241.8%29%29%5D-%5B%282%5Ctimes%20%5CDelta%20H%5Eo_f_%7B%28CO_2%28g%29%29%7D%29%2B%285%5Ctimes%20%280%29%29%5D%5C%5C%5C%5C%5CDelta%20H%5Eo_f_%7B%28CO_2%28g%29%29%7D%3D-410.8kJ%2Fmol)
Hence, the enthalpy of the formation of
is coming out to be -410.8 kJ/mol.
Answer
:small vibrational movements.
Explanation:
The particles of a solid are not able to move out of their positions relative to one another, but do have small vibrational movements.
___________________________________________________________
-Darkspirit-
Nonmetal is the correct answer