Answers:
See below
Step-by-step explanation:
1. Most food energy
(a) Pringles
Heat from Pringles + heat absorbed by water = 0
m₁ΔH + m₂CΔT = 0
1.984ΔH + 100 × 4.184 × 18 = 0
1.984ΔH + 7530 = 0
ΔH = -7530/1.984 = -3800 J/g
(b) Cheetos
0.884ΔH + 418.4 × 13 = 0
ΔH = -5400/0.884 = -6200 J/g
Cheetos give you more food energy per gram.
(c) Snickers
Food energy = 215 Cal/28 g × 4184 J/1 Cal = 32 000 J/g
The food energy from Cheetos is much less than that from a Snickers bar
2. Experimental uncertainty
The experimental values are almost certainly too low.
Your burning food is heating up the air around it, so much of the heat of combustion is lost to the atmosphere.
3. Percent efficiency
Experimental food energy = 3800 J/g
Actual food energy = 150 Cal/28 g × 4184 J/1 Cal = 22 000 J/g
% Efficiency = Experimental value/Actual value × 100 %
= 3800/22 000 × 100 %
= 17 %
Halogens are most likely to bond with Alkaline Earth Metals and Alkali metals.
Answer:
Initial concentration of HI is 5 mol/L.
The concentration of HI after
is 0.00345 mol/L.
Explanation:

Rate Law: ![k[HI]^2 ](https://tex.z-dn.net/?f=k%5BHI%5D%5E2%0A)
Rate constant of the reaction = k = 
Order of the reaction = 2
Initial rate of reaction = 
Initial concentration of HI =![[A_o]](https://tex.z-dn.net/?f=%5BA_o%5D)
![1.6\times 10^{-7} mol/L s=(6.4\times 10^{-9} L/mol s)[HI]^2](https://tex.z-dn.net/?f=1.6%5Ctimes%2010%5E%7B-7%7D%20mol%2FL%20s%3D%286.4%5Ctimes%2010%5E%7B-9%7D%20L%2Fmol%20s%29%5BHI%5D%5E2)
![[A_o]=5 mol/L](https://tex.z-dn.net/?f=%5BA_o%5D%3D5%20mol%2FL)
Final concentration of HI after t = [A]
t = 
Integrated rate law for second order kinetics is given by:
![\frac{1}{[A]}=kt+\frac{1}{[A_o]}](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B%5BA%5D%7D%3Dkt%2B%5Cfrac%7B1%7D%7B%5BA_o%5D%7D)
![\frac{1}{[A]}=6.4\times 10^{-9} L/mol s\times 4.53\times 10^{10} s+\frac{1}{[5 mol/L]}](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B%5BA%5D%7D%3D6.4%5Ctimes%2010%5E%7B-9%7D%20L%2Fmol%20s%5Ctimes%204.53%5Ctimes%2010%5E%7B10%7D%20s%2B%5Cfrac%7B1%7D%7B%5B5%20mol%2FL%5D%7D)
![[A]=0.00345 mol/L](https://tex.z-dn.net/?f=%5BA%5D%3D0.00345%20mol%2FL)
The concentration of HI after
is 0.00345 mol/L.
Correct answer is option E. <span>It is a redox reaction in which Zn is oxidized at the anode, and V is reduced at the cathode.
Reason:
In above reaction, the oxidation state of VO3- is +5, while that of VO2 is +4. Thus there is reduction of V from +5 to +4
In case of Zn, oxidation state of Zn is increased from 0 to +2, Thus process is referred as oxidation. </span>
Answer:
Heat flows from the block at high temperature to the one with lower temperature
Explanation:
The direction of heat flow is from a body at higher temperature to one with a lower temperature.
- Temperature gradient determines the way and manner in which heat is dissipated.
- As a system tend to increase entropy, it ensures that heat moves from hotter body to a colder body.
- Heat movement here is by conduction as the body touches.
- When both bodies reaches the same temperature, thermal equilibrium is established.