Answer:
The time is 0.563 ns.
Explanation:
Given that,
Index of refraction of glass = 1.41
Distance = 12.0 cm
Angle = 33.0°
We need to calculate the refraction angle
Using Snell's law

put the value into the formula



We need to calculate the velocity of beam in glass
Using formula of velocity

Put the value into the formula


We need to calculate the time
Using formula of distance





Hence, The time is 0.563 ns.
Answer:
a. μ
3 ± 1.8 = [1.2,4.8]
b. The correct answer is option D. No, because the sample size is large enough.
Explanation:
a. The population mean can be determined using a confidence interval which is made up of a point estimate from a given sample and the calculation error margin. Thus:
μ
±(t*s)/sqrt(n)
where:
μ
= is the 95% confidence interval estimate
x_ = mean of the sample = 3
s = standard deviation of the sample = 5.8
n = size of the sample = 41
t = the t statistic for 95% confidence and 40 (n-1) degrees of freedom = 2.021
substituting all the variable, we have:
μ
3 ± (2.021*5.8)/sqrt(41) = 3 ± 1.8 = [1.2,4.8]
b. The correct answer is option D. No, because the sample size is large enough.
Using the the Central Limit Theorem which states that regardless of the distribution shape of the underlying population, a sampling distribution of size which is ≥ 30 is normally distributed.
Rain will be expected in Billings
The magnitude is doubled. The direction doesn't change.