The hydrogen fusion process will begin after the protostar reaches a temperature of 10 million degrees kelvin, and it will then turn into a stable star.
<h3>How does a protostar become a stable star?</h3>
The interstellar medium can sometimes be gathered into a large nebula, which is a cloud of gas and dust. A nebula can span a number of light years. These nebulae are where gas and dust can combine to produce stars. Until a star can combine hydrogen into helium, it cannot be considered a star. They are referred to as protostars before then. As gravity starts to gather the gases into a ball, a protostar is created. Accrution is the term for this procedure.
Gravitational energy starts to heat the gasses as gravity draws them into the ball's core, which causes the gasses to radiate radiation. Radiation initially just dissipates into space. However, much of the radiation is retained inside the protostar as it draws in stuff and becomes denser, which causes the protostar to heat up even more quickly.
The hydrogen fusion process will begin after the protostar reaches a temperature of 10 million degrees kelvin, and it will then turn into a star.
Learn more about a protostar here:
brainly.com/question/12534975
#SPJ4
F(of spring)=230x=ma=3.5(5)=17.5=230x; x=0.07m.
Simple reaction time involves selecting a
specific and correct response from several choices when presented with several
different stimuli. This is very important because historically, this was the
first indicators of intelligence pioneered by Francis Galton. To measure one’s
intelligence is to know how he quick a person could respond to the stimulus
with an already expected response wherein the stimulus is given unknown to the
receiver. In other terms, the intelligence is measured on how quick a person
could grasp certain concepts and how he could think fast and answer them
correctly.
<span> </span>
Answer:
The needed energy to melt of ice is 1670 J.
Explanation:
Given that,
Mass of ice = 5 g
Specific latent heat = 334000 J/kg
We need to calculate the energy
Using formula of energy

Where, m = mass
L = latent heat
Put the value into the formula


Hence, The needed energy to melt of ice is 1670 J.