the process goes like this.
1.cells
2.tissues
3.organs
4.organ systems
5.organisms
tissues are grouped to form organs.
I hope this helps.
<span>Because you've added coefficients to the molecules on the right side of the equation, the number of oxygen atoms has changed.</span>
We calculate it as follows:
Moles CO2 = 0.01849 g / 44 = 0.000420
<span>Mass C = 0.000420 x 12 = 0.00504 g </span>
<span>Moles H = 2 x 0.006232 / 18 = 0.000692 </span>
<span>Mass H = 0.000692 g </span>
<span>Mass O = 0.005982 - ( 0.00504 + 0.000692) = 0.00025 </span>
<span>Moles O = 0.00025 / 16 = 0.0000156 </span>
<span>C 0.000420
H 0.000692
O 0.0000156
</span>
<span>divide each by the smallest value, giving you the chemical formula as:
</span><span>
C27H44O</span>
Answer: 1.14
Explanation:

To calculate the molarity of acid, we use the equation given by neutralization reaction:

where,
are the n-factor, molarity and volume of acid which is 
are the n-factor, molarity and volume of base which is NaOH.
We are given:

Putting values in above equation, we get:

To calculate pH of gastric juice:
molarity of
= 0.072
![pH=-log[H^+]](https://tex.z-dn.net/?f=pH%3D-log%5BH%5E%2B%5D)

Thus the pH of the gastric juice is 1.14
Thank you for posting your question here. Below is the solution:
HNO3 --> H+ + NO3-
<span>HNO3 = strong acid so 100% dissociation </span>
<span>** one doesn't need to find the molarity of water since it is the solvent </span>
<span>0M HNO3 </span>
<span>1x10^-6M H3O+ </span>
<span>1x10^-6M NO3- </span>
<span>1x10^-8M OH-.....the Kw = 1x10^-14 = [H+][OH-] </span>
<span>you have 1x10^-6M H+ so, 1x10^-14 / 1x10^-6 = 1x10^-8M OH- </span>
<span>1x10^-6 Ba(OH)2 = strong base, 100% dissociation </span>
<span>1x10^-6M Ba2+ </span>
<span>2x10^-6M OH- since there are 2 OH- / 1 Ba2+ </span>
<span>0M Ba(OH)2 </span>
<span>5x10^-9M H3O+</span>