Answer:
Explanation:
The acidity of a solution is measured by its pH, which is the logarithm of the inverse of the molar concentration of hydronium (H₃O⁺) ions:
- pH = log 1 / [H₃O⁺] = - log [H₃O⁺]
When you know the pH value you can find hydronium concentration using the antilogaritm function:
![pH=-log[H_3O^{+}]\\ \\ {[H_3O^+]}=10^{-pH}\\ \\ {[H_3O^+]}=10^{-2.50}\\ \\ {[H_3O^+]}=0.0032](https://tex.z-dn.net/?f=pH%3D-log%5BH_3O%5E%7B%2B%7D%5D%5C%5C%20%5C%5C%20%7B%5BH_3O%5E%2B%5D%7D%3D10%5E%7B-pH%7D%5C%5C%20%5C%5C%20%7B%5BH_3O%5E%2B%5D%7D%3D10%5E%7B-2.50%7D%5C%5C%20%5C%5C%20%7B%5BH_3O%5E%2B%5D%7D%3D0.0032)
The unit of molar concentration is M.
To prove your answer you can take the logarithm of 0.0316:
Answer:
49.4 g Solution
Explanation:
There is some info missing. I think this is the original question.
<em>A chemistry student needs 20.0g of acetic acid for an experiment. He has 400.g available of a 40.5 % w/w solution of acetic acid in acetone. </em>
<em>
Calculate the mass of solution the student should use. If there's not enough solution, press the "No solution" button. Round your answer to 3 significant digits.</em>
<em />
We have 400 g of solution and there are 40.5 g of solute (acetic acid) per 100 grams of solution. We can use this info to find the mass of acetic acid in the solution.

Since we only need 20.0 g of acetic acid, there is enough of it in the solution. The mass of solution that contains 20.0 g of solute is:

Concentration can be expressed in different forms: molarity, molality, normality, percentage, part per million and many more. For molality, it is a unit of concentration expressed as moles of solute per kilogram of solvent. Therefore,
0.3 = moles solute/0.10 kg solvent
moles solute = 0.03 moles
Answer:
The Coriolis effect
Explanation:
The Coriolis effect is the effect that makes tornados, water spouts, and are often seen in storms. They make water curve and rotate as well as the wind And current.