The answers this question is A.
The molar mass of a, b and c at STP is calculated as below
At STP T is always= 273 Kelvin and ,P= 1.0 atm
by use of ideal gas equation that is PV =nRT
n(number of moles) = mass/molar mass therefore replace n in the ideal gas equation
that is Pv = (mass/molar mass)RT
multiply both side by molar mass and then divide by Pv to make molar mass the subject of the formula
that is molar mass = (mass x RT)/ PV
density is always = mass/volume
therefore by replacing mass/volume in the equation by density the equation
molar mass=( density xRT)/P where R = 0.082 L.atm/mol.K
the molar mass for a
= (1.25 g/l x0.082 L.atm/mol.k x273k)/1.0atm = 28g/mol
the molar mass of b
=(2.86g/l x0.082L.atm/mol.k x273 k) /1.0 atm = 64 g/mol
the molar mass of c
=0.714g/l x0.082 L.atm/mol.K x273 K) 1.0atm= 16 g/mol
therefore the
gas a is nitrogen N2 since 14 x2= 28 g/mol
gas b =SO2 since 32 +(16x2)= 64g/mol
gas c = methaneCH4 since 12+(1x4) = 16 g/mol
The volume that will be occupied at 735 torr and 57 c is 23.12 L
<u><em>calculation</em></u>
- <u><em> </em></u> At STP temperature=273 k and pressure=760 torr
- <u><em> </em></u>by use of combined gas formula
that is P1V1/T1= P2V2/T2
where; P1 =760 torr
T1= 273 K
V1= 18.5 L
P2= 735 torr
T2= 57+273= 330 K
V2=?
- by making V2 the formula of subject
V2= T2P1V1/P2T1
V2= [(18.5L x 330 k x 760 torr)/(735 torr x 273 k)]= 23.12 L
Answer:
i think the long wavelength has more energy
Explanation:
plz correct me if i'm wrong