Answer:
kJ/mol
Explanation:
Given and known facts
Mass of Benzene
grams
Mass of water
grams
Standard heat capacity of water
J/g∙°C
Change in temperature ΔT
°C
Heat

Heat released by benzine is - 7.82 kJ
Now, we know that
grams of benzene release
kJ heat
So,
g benzine releases

kJ/g
mol C6H6
Heat released

kJ/mol
Answer:
Desert
Explanation:
The adaptation shown by the given plants and animals shows that they will adapted to the desert biome.
It is so because, due to high temperature of desert some desert animals like camel have the storage of fat in humps or tails; some animals have large ears such as Jackrabbits, it helps to release body heat and adapt in high temperature; plants have thick water holding tissues to reduce water loss in heat and waxy coating that keeps the plants cooler and reduce moisture loss.
Hence, the correct answer is "Desert".
Alkenes must undergo addition because they have easily broken tt bonds.
Markonikov's rule states in the addition of HX to an unsymmetrical alkene, the H atom bonds to the less substituted carbon atom.
alkenes are unsaturated hydrocarbons because they have fewer than the maximum number of hydrogen atoms per carbon.
Alkyl halides have good leaving groups and therefore readily undergo substitution and elimination reactions.
In hydroboration, the boron atom bonds to the substituted carbon.
Hydroxides, amines and alcoxides undergo substitution and elimination, but can do so only when the heteroatom is made into a good leaving group.
Answer:
<em>293.99 g </em>
OR
<em>0.293 Kg</em>
Explanation:
Given data:
Lattice energy of Potassium nitrate (KNO3) = -163.8 kcal/mol
Heat of hydration of KNO3 = -155.5 kcal/mol
Heat to absorb by KNO3 = 101kJ
To find:
Mass of KNO3 to dissolve in water = ?
Solution:
Heat of solution = Hydration energy - Lattice energy
= -155.5 -(-163.8)
= 8.3 kcal/mol
We already know,
1 kcal/mol = 4.184 kJ/mole
Therefore,
= 4.184 kJ/mol x 8.3 kcal/mol
= 34.73 kJ/mol
Now, 34.73 kJ of heat is absorbed when 1 mole of KNO3 is dissolved in water.
For 101 kJ of heat would be
= 101/34.73
= 2.908 moles of KNO3
Molar mass of KNO3 = 101.1 g/mole
Mass of KNO3 = Molar mass x moles
= 101.1 g/mole x 2.908
= 293.99 g
= 0.293 kg
<em><u>293.99 g potassium nitrate has to dissolve in water to absorb 101 kJ of heat. </u></em>