Answer:
6858.5712 m/s
Explanation:
Given that:
Radius, r
R = 3.20 * 10^3.
Normal force = 0.5 * normal weight
Normal force = Fn ; Normal weight = Fg
Fn = 0.5Fg
Recall:
mv² / R = Fn + Fg
Fn = 0.5Fg
mv² / R = 0.5Fg + Fg
mv² /R = 1.5Fg
mv² = 1.5Fg * R
F = mg
mv² = 1.5* mg * R
v² = 1.5gR
v = sqrt(1.5gR)
V = sqrt(1.5 * 9.8 * 3.2 * 10^3)
V = sqrt(47.04^3)
V = 6858.5712 m/s
Your answer is 632,100J which is Choice D
Do not worry if you don't recognize both parts of the problem at this point. If you recognize the dynamics problem,<span> On the other hand, if you recognize this as a kinematics problem you will quickly see that you need to find angular acceleration before you can begin and so will need to do that pre-step first.</span>
Answer:
200 N
Explanation:
The crowbar is 2 meter, or 200 cm. The effort arm is 160 cm, so the moment arm of the object is 40 cm.
(800 N) (40 cm) = F (160 cm)
F = 200 N
Answer: all of the above and yes
hope thsi helps