Answer:
No
Explanation:
No, his mass remains the same no matter where he is in the universe.
But then again the moon has less gravitational pull, therefore your weight and mass will be smaller in space and on the moon than on earth
I hope this was helpful! ;)
Answer: 2.8 moles
Explanation:
The balanced equation below shows that 1 mole of sodium oxide reacts with 1 mole of water to form 2 moles of sodium hydroxide respectively.
Na2O + H2O --> 2NaOH
1 mole of H2O = 2 moles of NaOH
Let Z moles of H2O = 5.6 mole of NaOH
To get the value of Z, cross multiply
5.6 moles x 1 mole= Z x 2 moles
5.6 = 2Z
Divide both sides by 2
5.6/2 = 2Z/2
2.8 = Z
Thus, 2.8moles of H2O are needed to produce 5.6 mol of NaOH
Answer:
oceans is the answer that I got
Answer:
Yes
Explanation:
Yes, A substance can be a lewis acid without being a Bronsted-Lowery acid because there are some substances which cannot donate protons(Bronsted-Lowery acid) but can accept a pair of electron.
<u><em>For Example:</em></u>
Let us take the example of BF₃
BF₃ contains no proton so it is not a Bronsted Lowery Acid
However, BF₃ has an incomplete octet with 6 electrons. It needs an electron pair to complete its octet. It accepts a pair of electron to become a Lewis Acid
Answer:
0.184 atm
Explanation:
The ideal gas equation is:
PV = nRT
Where<em> P</em> is the pressure, <em>V</em> is the volume, <em>n</em> is the number of moles, <em>R</em> the constant of the gases, and <em>T</em> the temperature.
So, the sample of N₂O₃ will only have its temperature doubled, with the same volume and the same number of moles. Temperature and pressure are directly related, so if one increases the other also increases, then the pressure must double to 0.092 atm.
The decomposition occurs:
N₂O₃(g) ⇄ NO₂(g) + NO(g)
So, 1 mol of N₂O₃ will produce 2 moles of the products (1 of each), the <em>n </em>will double. The volume and the temperature are now constants, and the pressure is directly proportional to the number of moles, so the pressure will double to 0.184 atm.