Different speeds of light through two separate media ... and the difference in wavelength caused by the difference ... causes the bending of waves fronts associated with light rays.
AFTER the bend, since the light rays then travel in a different direction, we may also say that the 'velocity' has changed.
Answer:
(a) m = 1.6 x 10²¹ kg
(b) K.E = 2.536 x 10¹¹ J
(c) v = 7.12 x 10⁵ m/s
Explanation:
(a)
First we find the volume of the continent:
V = L*W*H
where,
V = Volume of Slab = ?
L = Length of Slab = 4450 km = 4.45 x 10⁶ m
W = Width of Slab = 4450 km = 4.45 x 10⁶ m
H = Height of Slab = 31 km = 3.1 x 10⁴ m
Therefore,
V = (4.45 x 10⁶ m)(4.45 x 10⁶ m)(3.1 x 10⁴ m)
V = 6.138 x 10¹⁷ m³
Now, we find the mass:
m = density*V
m = (2620 kg/m³)(6.138 x 10¹⁷ m³)
<u>m = 1.6 x 10²¹ kg</u>
<u></u>
(b)
The kinetic energy will be:
K.E = (1/2)mv²
where,
v = speed = (1 cm/year)(0.01 m/1 cm)(1 year/365 days)(1 day/24 h)(1 h/3600 s)
v = 3.17 x 10⁻¹⁰ m/s
Therefore,
K.E = (1/2)(1.6 x 10²¹ kg)(3.17 x 10⁻¹⁰ m/s)²
<u>K.E = 2.536 x 10¹¹ J</u>
<u></u>
(c)
For the same kinetic energy but mass = 77 kg:
K.E = (1/2)mv²
2.536 x 10¹¹ J = (1/2)(77 kg)v²
v = √(2)(2.536 x 10¹¹ J)
<u>v = 7.12 x 10⁵ m/s</u>
Answer:
I think the answer is D,54 joules
Answer:
12 (Magnesium- Mg)
Explanation:
Looking at the four numbers, we have:
Magnesium, Silicon, Sulfur, and Chlorine.
We can eliminate two of the answers immediately just by looking at the periodic table.
Sulfur and Chlorine are on the nonmetal side of the periodic table. So that's <em>definitely</em> not it. That leaves Magnesium and Silicon.
Silicon is a Metalloid. Magnesium is an Alkaline earth Metal.
Metaloids are elements that have a mix of both<em> metal</em> and<em> nonmetal </em>properties (luster, how it feels, etc.). Since it's a MIX and Magnesium is just straight METAL-
We can say Magnesium has the most metallic properties.
hope this helps!!
In optics, a diaphragm is a thin opaque structure with an opening (aperture) at its center. The role of the diaphragm is to stop the passage of light, except for the light passing through the aperture.