Acceleration = (change in speed) / (time for the change)
change in speed = (speed at the end) minus (speed at the beginning)
change in speed = (zero) minus (28 m/s) = -28 m/s
Acceleration = (-28 m/s) / (13 sec)
Acceleration = -2.15 m/s²
Answer:
The astronaut can throw the hammer in a direction away from the space station. While he is holding the hammer, the total momentum of the astronaut and hammer is 0 kg • m/s. According to the law of conservation of momentum, the total momentum after he throws the hammer must still be 0 kg • m/s. In order for momentum to be conserved, the astronaut will have to move in the opposite direction of the hammer, which will be toward the space station.
Explanation:
Answer:
The fall in temperature of the liquid is 8.6 +/- 0.1 ⁰C
Explanation:
Given;
initial temperature of the liquid, t₁ = 76.3 +/- 0.4⁰C
final temperature of the liquid, t₂ = 67.7 +/- 0.3⁰C
The change in temperature of the liquid is calculated as;
Δt = t₂ - t₁
Δt = (67.7 - 76.3) +/- (0.3 - 0.4)
Δt = (-8.6) +/- (-0.1)
Δt = 8.6 +/- 0.1 ⁰C
Therefore, the fall in temperature of the liquid is 8.6 +/- 0.1 ⁰C
heat from water goes into air in ball
air expands
ping goes the dent
When the heat source is removed from a fluid, convection currents in the fluid will eventually distribute heat uniformly throughout the fluid. When all of the fluid is at the same temperature, convection currents will stop.