<h3>
Answer:</h3>
1.43 × 10⁻²⁰ mol Li
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Atomic Structure</u>
- Using Dimensional Analysis
- Avogadro's Number - 6.022 × 10²³ atoms, molecules, formula units, etc.
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
8.63 × 10³ atoms Li
<u>Step 2: Identify Conversions</u>
Avogadro's Number
<u>Step 3: Convert</u>
- Set up:

- Multiply/Divide:

<u>Step 4: Check</u>
<em>Follow sig fig rules and round. We are given 3 sig figs.</em>
1.43355 × 10⁻²⁰ mol Li ≈ 1.43 × 10⁻²⁰ mol Li
Answer:
I think its might be 1 because the ionic numbers for CA is +2 and for P its +3
Avogadro's number is defined as the number of elementary particles (molecules, atoms, compounds, etc.) per mole of a substance. It is equal to 6.022×1023 mol-1 and is expressed as the symbol NA.
Answer:
A. Intramolecular interactions are generally stronger.
B. a. Only intermolecular interactions are broken when a liquid is converted to a gas.
Explanation:
<em>A. Which is generally stronger, intermolecular interactions or intramolecular interactions?</em>
Intramolecular interactions, in which electrons are gained, lost or shared, constitute true bonds and are one or two orders of magnitude stronger than intermolecular interactions.
<em>B. Which of these kinds of interactions are broken when a liquid is converted to a gas?</em>
When a liquid vaporizes, the intermolecular attractions are broken, that is, molecules get more separated. However, true bonds are not broken which is why the molecules keep their chemical identity.
<u>Answer:</u> The uncertainty in the velocity of oxygen molecule is 
<u>Explanation:</u>
The diameter of the molecule will be equal to the uncertainty in position.
The equation representing Heisenberg's uncertainty principle follows:

where,
= uncertainty in position = d = 
= uncertainty in momentum = 
m = mass of oxygen molecule = 
h = Planck's constant = 
Putting values in above equation, we get:

Hence, the uncertainty in the velocity of oxygen molecule is 