Answer:
minimum electric power consumption of the fan motor is 0.1437 Btu/s
Explanation:
given data
area = 3 ft by 3 ft
air density = 0.075 lbm/ft³
to find out
minimum electric power consumption of the fan motor
solution
we know that energy balance equation that is express as
E in - E out =
......................1
and at steady state
= 0
so we can say from equation 1
E in = E out
so
minimum power required is
E in = W = m
=
put here value
E in =
E in =
E in = 0.1437 Btu/s
minimum electric power consumption of the fan motor is 0.1437 Btu/s
Technician is correct sorry if im wronghg
Answer:
Basically there are two principal differences between the convection and conduction heat transfer
Explanation:
The conduction heat transfer is referred to the transfer between two solids due a temperature difference, while for, the convective heat transfer is referred to the transfer between a fluid (liquid or gas) and a solid. Also, they used different coefficients for its calculation.
We can include on the explanation that conduction thermal transfer is due to temperature difference, while convection thermal transfer is due to density difference.
Answer: a) 1.05kW b) 3.78MJ c) 5.3 bars
Explanation :
A)
Conversions give 900 kcal as 900000 x 4.2 J/cal {4.2 J/cal is the standard factor}
= 3780kJ
And 1 hour = 3600s
Therefore, Power in watts = 3780/3600 = 1.05kW = 1050W
B)
At 15km/hour a 15km run takes 1 hour.
1 hour is 3600s and the runner burns 1050 joule per second.
Energy used in 1 hour = 3600 x 1050 J/s
= 3780000 J or 3.78MJ
C)
1 mile = 1.61km so 13.1 mile is 13.1 x 1.61 = 21.1km
15km needs 3.78 MJ of energy therefore 21.1km needs 3.78 x 21.1/15 = 5.32MJ =5320 kJ
Finally,
1 Milky Way = 240000 calories = 4.2 x 240000 J = 1008000J or 1008kJ
This means that the runner needs 5320/1008 = 5.3 bars