The rate of reaction that can be measured in the dark by determining the amount of oxygen gas consumed in a period of time is the rate of respiration.
Why?
Plants can undergo two types of reactions involving oxygen:
- <u>Photosynthesis: </u>In this type of reaction, plants use energy from light to synthesize glucose. The chemical reaction for photosynthesis is: 6H₂O + 6CO₂ → C₆H₁₂O₆ + 6O₂, and this reaction produces oxygen gas in the presence of light, that means that to measure the rate of photsynthesis, you'll need to measure the amount of oxgen gas <u>produced</u> in a period of time.
- <u>Respiration:</u> In this type of reaction, plants convert the energy stored in the chemical bonds of molecules such as glucose to obtain energy. The chemical reaction for respiration is: C₆H₁₂O + 6O₂ → 6H₂O + 6CO₂, since this reaction consumes oxygen gas in the dark, that means that to measure the rate of respiration, you'll need to measure the amount of oxygen gas <u>consumed</u> in a period of time.
Have a nice day!
it has an electrons in a fixed path together on energy levels.
Answer:
Keq = 0.053
7.3 kJ/mol
Explanation:
Let's consider the following isomerization reaction.
glucose 6‑phosphate ⇄ glucose 1 - phosphate
The concentrations at equilibrium are:
[G6P] = 0.19 M
[G1P] = 0.01 M
The concentration equilibrium constant (Keq) is:
Keq = [G1P] / [G6P]
Keq = 0.01 / 0.19
Keq = 0.053
We can find the standard free energy change, ΔG°, of the reaction mixture using the following expression.
ΔG° = -R × T × lnKeq
ΔG° = -8.314 J/mol.K × 298 K × ln0.053
ΔG° = 7.3 × 10³ J/mol = 7.3 kJ/mol
Answer:
Energy was transferred
Explanation:
If the temperature changed, energy must have been added or lost, but not created. Energy can't be created or destroyed.
<u>An element is the simplest form of a substance. ... An atom is the part of an element. A particular element is composed of only one type of atom. Atoms are further composed of subatomic particles called electrons, protons and neutrons.</u>