<span>Ca3(PO4)2 + 3 H2SO4 = 3 CaSO4 + 2 H3PO4</span>
<span>Reaction type: double replacement
</span>
Answer:
116.88 g
Explanation:
Step 1: Write the balanced equation for the synthesis of NaCl
Na + 1/2 Cl₂ ⇒ NaCl
Step 2: Calculate the moles corresponding to 45.978 g of Na
The molar mass of Na is 22.990 g/mol.
45.978 g × 1 mol/22.990 g = 1.9999 mol
Step 3: Calculate the number of moles of NaCl formed from 1.9999 moles of Na
The molar ratio of Na to NaCl is 1:1. The moles of NaCl formed are 1/1 × 1.9999 mol = 1.9999 mol.
Step 4: Calculate the mass corresponding to 1.9999 moles of NaCl
The molar mass of NaCl is 58.443 g/mol.
1.9999 mol × 58.443 g/mol = 116.88 g
Answer : The value of acid dissociation constant is, 
Solution : Given,
Concentration pyridinecarboxylic acid = 0.78 M
pH = 2.53
First we have to calculate the hydrogen ion concentration.
![pH=-\log [H^+]](https://tex.z-dn.net/?f=pH%3D-%5Clog%20%5BH%5E%2B%5D)
![2.53=-\log [H^+]](https://tex.z-dn.net/?f=2.53%3D-%5Clog%20%5BH%5E%2B%5D)
![[H^+]=2.95\times 106{-3}M](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3D2.95%5Ctimes%20106%7B-3%7DM)
Now we have to calculate the acid dissociation constant.
The equilibrium reaction for dissociation of (weak acid) is,

initially conc. 0.78 0 0
At eqm. (0.78-x) x x
The expression of acid dissociation constant for acid is:
![k_a=\frac{[C_6H_4NO_2^-][H^+]}{[C_6H_4NO_2]}](https://tex.z-dn.net/?f=k_a%3D%5Cfrac%7B%5BC_6H_4NO_2%5E-%5D%5BH%5E%2B%5D%7D%7B%5BC_6H_4NO_2%5D%7D)
As, ![[H^+]=[C_6H_4NO_2^-]=x](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3D%5BC_6H_4NO_2%5E-%5D%3Dx)
So, 
Now put all the given values in this formula ,we get:



Therefore, the value of acid dissociation constant is, 
Let's consider water.
Regardless of what form it turns into, the mass should remain the same.
It's the same H20.
Add some heat and it becomes water vapor,
cool it down a bit and it becomes ice.
if you make it just right, it becomes water again.
A chemical change would involve the one or more element(s) changing into a different solution all together.
It cannot be reversed unless you use electrolysis or some other method.
Answer:
See explanation
Explanation:
Let us see what happens when each solution is mixed;
a) AlCl3(aq) + K3PO4(aq) ------> 3KCl(aq) + AlPO4(s)
A precipitate is formed here
b) RbCO3(aq) + NaCl(aq) -------> This is an impossible reaction hence no solid precipitate is formed here
c) MnCl2(aq) + Na2CO3(aq) → 2NaCl(aq) + MnCO3(s)
A precipitate is formed.
d) K2S(aq) + 2NH4Cl(aq) ------> 2KCl(aq) + (NH4)2S(aq)
No solid precipitate is formed
e) CaCl2(aq) + (NH4)2CO3(aq) → CaCO3(s) + 2NH4Cl(aq)
A solid precipitate is formed