Answer:
5.5 atm
Explanation:
Step 1: Calculate the moles in 2.0 L of oxygen at STP
At STP, 1 mole of an ideal gas occupies 22.4 L.
2.0 L × 1 mol/22.4 L = 0.089 mol
Step 2: Calculate the moles in 8.0 L of nitrogen at STP
At STP, 1 mole of an ideal gas occupies 22.4 L.
8.0 L × 1 mol/22.4 L = 0.36 mol
Step 3: Calculate the total number of moles of the mixture
n = 0.089 mol + 0.36 mol = 0.45 mol
Step 4: Calculate the pressure exerted by the mixture
We will use the ideal gas equation.
P × V = n × R × T
P = n × R × T / V
P = 0.45 mol × (0.0821 atm.L/mol.K) × 298 K / 2.0 L = 5.5 atm
The gas is confined in 3.0 L container ( rigid container) ⇒ the volume remains constant when the temperature is increased from from 27oC to 77oC and therefore V1=V2 .
<h2>
Hope it helps you please mark as brainlist</h2>
Answer : The correct option is, (D) 100 times the original content.
Explanation :
As we are given the pH of the solution change. Now we have to calculate the ratio of the hydronium ion concentration at pH = 5 and pH = 3
As we know that,
![pH=-\log [H_3O^+]](https://tex.z-dn.net/?f=pH%3D-%5Clog%20%5BH_3O%5E%2B%5D)
The hydronium ion concentration at pH = 5.
![5=-\log [H_3O^+]](https://tex.z-dn.net/?f=5%3D-%5Clog%20%5BH_3O%5E%2B%5D)
..............(1)
The hydronium ion concentration at pH = 3.
![3=-\log [H_3O^+]](https://tex.z-dn.net/?f=3%3D-%5Clog%20%5BH_3O%5E%2B%5D)
................(2)
By dividing the equation 1 and 2 we get the ratio of the hydronium ion concentration.
![\frac{[H_3O^+]_{original}}{[H_3O^+]_{final}}=\frac{1\times 10^{-5}}{1\times 10^{-3}}=\frac{1}{100}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BH_3O%5E%2B%5D_%7Boriginal%7D%7D%7B%5BH_3O%5E%2B%5D_%7Bfinal%7D%7D%3D%5Cfrac%7B1%5Ctimes%2010%5E%7B-5%7D%7D%7B1%5Ctimes%2010%5E%7B-3%7D%7D%3D%5Cfrac%7B1%7D%7B100%7D)
![100\times [H_3O^+]_{original}=[H_3O^+]_{final}](https://tex.z-dn.net/?f=100%5Ctimes%20%5BH_3O%5E%2B%5D_%7Boriginal%7D%3D%5BH_3O%5E%2B%5D_%7Bfinal%7D)
From this we conclude that when the pH of a solution changes from a pH of 5 to a pH of 3, the hydronium ion concentration is 100 times the original content.
Hence, the correct option is, (D) 100 times the original content.
Answer:
The answer is option a. The evaporation of water from the skin
Explanation:
An endothermic reaction is any synthetic reaction that retains heat from its environment. The ingested energy gives the enactment energy to the reaction to happen.
No new bonds formed, no bonds broken in this example. water molecules go from liquid to vapour (gas ), intermolecular bond exist between polar (-OH) molecules and energy is required to break these bonds during the change from liquid to gas. So, it is endothermic .
Remaining three above examples are exothermic. combustion of gas releases energy(exothermic). burninig of the candle exothermic because the energy released from the oxygen into carbon dioxide and water.oxidation of iron also exothermic
Answer:
The equinoxes are the only time when both the Northern and Southern Hemispheres experience roughly equal amounts of daytime and nighttime. On Earth, there are two equinoxes every year: one around March 21 and another around September 22.
Explanation: