Answer:

Explanation:
We need to use the formula for heat of vaporization.

Identify the variables.
- The heat absorbed by the evaporating water is the <u>latent heat of vaporization. </u>For water, that is 2260 Joules per gram.
- Q is the energy, in this problem, 50,000 Joules.
- m is the mass, which is unknown.

Substitute the values into the formula.

We want to find the mass. We must isolate the variable, m.
m is being multiplied by 2260 J/g. The inverse operation of multiplication is division. Divide both sides by 2260 J/g.


Divide. Note that the Joules (J) will cancel each other out.


Round to the nearest whole number. The 1 in the tenth place tells us to leave the number as is.

The mass is about 22 grams, so choice B is correct.
Answer:
Hydrogen is the smallest chemical element. It has one proton and one electron, making it neutral. However, the ions of hydrogen atom are charged species. Thus, the key difference between hydrogen atom and hydrogen ion is that the hydrogen atom is neutral whereas hydrogen ion carries a charge.
Answer:
Oxidation–reduction or redox reactions are reactions that involve the transfer of electrons between chemical species (check out this article on redox reactions if you want a refresher!). The equations for oxidation-reduction reactions must be balanced for both mass and charge, which can make them challenging to balance by inspection alone. In this article, we’ll learn about the half-reaction method of balancing, a helpful procedure for balancing the equations of redox reactions occurring in aqueous solution.
Explanation:
Answer: We can see the moon during the day for the same reason we see the moon at night. The surface of the moon is reflecting the sun's light into our eyes
Explanation:
Answer:
cis-3-hexene and trans-3-hexene
Explanation:
Hydroboration oxidation is a method of preparation of alcohol from alkene.
Hydroboration follows anti-Markovnikoff rule in which alcohol group attached to less substituted carbon. Stereochemistry of the product is always syn that is H and OH attached to the same side of the double bond.
cis-3-hexene and trans-3-hexene undergoes hydroboration to form 3-hexanol.