Answer:
Explanation:
Aluminium is used in rechargeable battery.
Aluminium ions provide the energy by flowing from anode to the cathode.
When the battery is recharged these ions comes to the anode.
The one ion gives three electrons. Which means one Al⁺³ is equal to the three Li⁺ ions. So, three unit of charge giving by ions increase the energy storage capacity.
The rechargeable batteries with aluminium gives low cost and low flammability.
It is safe to use because of inertness of aluminium and also easy to use in ambient environment.
Aluminium also have high volume capacity than lithium which means energy storage per volume is greater.
Its charge discharge cycles are also greater.
The aluminum ion batteries are also smaller in size.
Mass spectrum of Dodecane will give following information.
1 ) Molecular Peak or Parent Peak:
The Parent peak will appear at m/z = 170. The intensity of this peak will be very weak.
2) Fragments:
Usually the fragments of such long chain alkanes appear with spacing of 14 amu, Hence, the peaks in dodecane will be as follow,
170 - 156 - 142 - 128 - 114 - 100 - 86 - 72 - 58 - 44 - 30 - 16
3) Base Peak:
Most probably the Base peak will appear at m/z = 57. This peak is due to the formation of tertiary butyl cation as the intensity mainly depends upon the stability of cation. So this cation might form due to rearrangment giving the intensity of 100%.
Answer: 
Explanation:
Combined gas law is the combination of Boyle's law, Charles's law and Gay-Lussac's law.
The combined gas equation is,:


where,
= initial pressure of gas = 101.3 kPa
= final pressure of gas = 94.6 kPa
= initial volume of gas = 20.0 ml
= final volume of gas = ?
= initial temperature of gas = 
= final temperature of gas = 
Now put all the given values in the above equation, we get the final volume of gas.


Thus the correct numerical setup for calculating the new volume is 