1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
klio [65]
3 years ago
14

In order to test the feasibility of drying a certain foodstuff, drying data were obtained in a tray dryer with air flow over the

top exposed surface having an area of 0.186 m2. The bone dry sample weight was 3.765 kg dry solid. At equilibrium after a long period, the wet sample weight was 3.955 kg (water plus solid). Hence, 3.955-3.765 or 0.190 kg of equilibrium moisture was present. The following table provides the sample weights versus time during the drying test:
Time (hr)
Weight (kg)
Time (hr)
Weight (kg)
Time (hr)
Weight (kg)

0
4.944
2.2
4.554

7.0
4.019
0.4
4.885

3.0
4.404
9.0
3.978

0.8
4.808
4.2
4.241

12.0
3.955
1.4
4.699

5.0
4.150

A) Calculate the free moisture content, X (kg water per kg dry solid) for each data point and plot X versus t;
B) Using the slope, calculate the drying rate, R in kg water per hour per square meter and plot R versus X;
C) Using this drying rate curve, predict the total time to dry the sample from X = 0.20 to X = 0.04. Use numerical integration in the falling rate period. What is the drying rate in the constant rate period and what is X in the constant rate period?

Engineering
1 answer:
Natasha2012 [34]3 years ago
3 0

Answer / Explanation:

(A)  To start, we calculate the free moisture content  multiplies by Kg H₂O / Kg Dry solid for each data point and plot X versus Time

Therefore,

X = Wt - Ws - Equilibrium Moisture / Ws

= 4.944 - 3.765 - 0.190 / 3.785

 = 0.26268 Kg H₂0 / Kg dry solid

(a) To also calculate the free moisture content X Kg H₂O / Kg Dry solid for each data point and plot X versus Time.

Kindly refer to the plotted graph below of X against or versus Time

(B) To measure the slope, we calculate the drying rate in Kg H₂0 /H.M²

Now, recalling the equation for calculating slope:

we have Slope = ΔX /ΔT

Therefore, R =Ls ΔX / A ΔT

Hence, R = 3.765  ( 0.24701 - 0.26268) / 0.186 ( 0.4 - 0)

= 0.79301

(b) To measure the slope, we calculate the drying rate in Kg H₂0 /H.M²

Kindly refer to the plotted graph below of R against or versus X

(C) Since t ( 0.4) = 4.8 hours

                t (0.2 ) = 0.7 hours

total time (t)  = 4.1 hours

This can also be represented in the graph below:

(c) USING THIS DRYING RATE CURVE, PREDICT THE TOTAL TIME TO DRY THE SAMPLE FROM X=0.20 TO X=0.04. USE GRAPHICAL INTERGRATION FOR THE FALLING-RATE PERIOD. WHAT IS THE DRYING RATE R  IN THE CONSTANT-RATE PERIOD AND X

Moving forward,

Rc = 0.998 Kg H₂0 /hm²

= t = Ls dx/ A R = 3.765 / 0.186 ( 0.20 - 0.12 / 0.998)

= 1.63

You might be interested in
A vacuum pump is used to drain a basement of 20 °C water (with a density of 998 kg/m3 ). The vapor pressure of water at this tem
lord [1]

Answer:

The maximum theoretical height that the pump can be placed above liquid level is \Delta h=9.975\,m

Explanation:

To pump the water, we need to avoid cavitation. Cavitation is a phenomenon in which liquid experiences a phase transition into the vapour phase because pressure drops below the liquid's vapour pressure at that temperature.  As a liquid is pumped upwards, it's pressure drops. to see why, let's look at Bernoulli's equation:

\frac{\Delta P}{\rho}+g\, \Delta h +\frac{1}{2}  \Delta v^2 =0

(\rho stands here for density, h for height)

Now, we are assuming that there aren't friction losses here. If we assume further that the fluid is pumped out at a very small rate, the velocity term would be negligible, and we get:

\frac{\Delta P}{\rho}+g\, \Delta h  =0

\Delta P= -g\, \rho\, \Delta h

This means that pressure drop is proportional to the suction lift's height.

We want the pressure drop to be small enough for the fluid's pressure to be always above vapour pressure, in the extreme the fluid's pressure will be almost equal to vapour pressure.

That means:

\Delta P = 2.34\,kPa- 100 \,kPa = -97.66 \, kPa\\

We insert that into our last equation and get:

\frac{ \Delta P}{ -g\, \rho\,}= \Delta h\\\Delta h=\frac{97.66 \, kPa}{998 kg/m^3 \, \, 9.81 m/s^2} \\\Delta h=9.975\,m

And that is the absolute highest height that the pump could bear. This, assuming that there isn't friction on the suction pipe's walls, in reality the height might be much less, depending on the system's pipes and pump.

8 0
3 years ago
4.68 Steam enters a turbine in a vapor power plant operating at steady state at 560°C, 80 bar, and exits as a saturated vapor at
garik1379 [7]

Answer:

please mark me as a brainleast

Explanation:

hahahahhahaahhahahahahahahahahahahahahahahahaahhhahhhahaahahhaahhhahahaah

3 0
2 years ago
An alloy is evaluated for potential creep deformation in a short-term laboratory experiment. The creep rate (ϵ˙) is found to be
cupoosta [38]

Answer:

Activation energy for creep in this temperature range is Q = 252.2 kJ/mol

Explanation:

To calculate the creep rate at a particular temperature

creep rate, \zeta_{\theta} = C \exp(\frac{-Q}{R \theta} )

Creep rate at 800⁰C, \zeta_{800} = C \exp(\frac{-Q}{R (800+273)} )

\zeta_{800} = C \exp(\frac{-Q}{1073R} )\\\zeta_{800} = 1 \% per hour =0.01\\

0.01 = C \exp(\frac{-Q}{1073R} ).........................(1)

Creep rate at 700⁰C

\zeta_{700} = C \exp(\frac{-Q}{R (700+273)} )

\zeta_{800} = C \exp(\frac{-Q}{973R} )\\\zeta_{800} = 5.5 * 10^{-2}  \% per hour =5.5 * 10^{-4}

5.5 * 10^{-4}  = C \exp(\frac{-Q}{1073R} ).................(2)

Divide equation (1) by equation (2)

\frac{0.01}{5.5 * 10^{-4} } = \exp[\frac{-Q}{1073R} -\frac{-Q}{973R} ]\\18.182= \exp[\frac{-Q}{1073R} +\frac{Q}{973R} ]\\R = 8.314\\18.182= \exp[\frac{-Q}{1073*8.314} +\frac{Q}{973*8.314} ]\\18.182= \exp[0.0000115 Q]\\

Take the natural log of both sides

ln 18.182= 0.0000115Q\\2.9004 = 0.0000115Q\\Q = 2.9004/0.0000115\\Q = 252211.49 J/mol\\Q = 252.2 kJ/mol

3 0
3 years ago
Explain why Chloe's design needs to be redone in the following scenario, and recommend the techniques she needs to include in he
Alenkinab [10]

Answer:

She believes he's weak and won't do what needs to be done to become a king.

Explanation:

She says ('I fear thy nature') and calls him 'too full o' th' milk of human kindness' which reflects that she feels his kindness makes him weak and may prevent him from proceeding the plan. Thus, she manipulates him to keep his kindness aside and do what she wishes him to do. She rather belittles him to get her purpose solved and

7 0
2 years ago
Read 2 more answers
At an axial load of 22 kN, a 15-mm-thick × 40-mm-wide polyimide polymer bar elongates 4.1 mm while the bar width contracts 0.15
Alenkasestr [34]

Answer:

The Poisson's Ratio of the bar is 0.247

Explanation:

The Poisson's ratio is got by using the formula

Lateral strain / longitudinal strain

Lateral strain = elongation / original width (since we are given the change in width as a result of compession)

Lateral strain = 0.15mm / 40 mm =0.00375

Please note that strain is a dimensionless quantity, hence it has no unit.

The Longitudinal strain is the ratio of the elongation to the original length in the longitudinal direction.

Longitudinal strain = 4.1 mm / 270 mm = 0.015185

Hence, the Poisson's ratio of the bar is 0.00375/0.015185 = 0.247

The Poisson's Ratio of the bar is 0.247

Please note also that this quantity also does not have a dimension

3 0
3 years ago
Other questions:
  • Disc brake rotors that are too thin cannot handle as much heat and will experience ___________.
    6·1 answer
  • Water is pumped from one large reservoir to another at a higher elevation. If the flow rate is 2.5 ft3 /s and the pump delivers
    12·1 answer
  • Water is flowing in a metal pipe. The pipe OD (outside diameter) is 61 cm. The pipe length is 120 m. The pipe wall thickness is
    9·1 answer
  • Explain why the following acts lead to hazardous safety conditions when working with electrical equipmentA) Wearing metal ring o
    11·1 answer
  • Write a program to calculate overtime pay of 10 employees. Overtime is paid at the rate of Rs. 12.00
    13·1 answer
  • In homes today, what is behind the reason for flashover fires occurring much more rapidly than in the past generations?
    8·1 answer
  • Write the 5 important of profession education in a point​
    10·1 answer
  • 1. Lea y analice la Norma ISO 16949 - Calidad en la industria automotriz, luego se ubica en los requisitos particulares, usted m
    12·1 answer
  • 7. True or False? The positive effects of a new<br> technology always outweigh its negative effects.
    9·2 answers
  • How pine are processed ????
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!