Answer:
Silver Acetate would be the Limiting Reagent.
Explanation:
The balance chemical equation for the given double displacement reaction is as;
HCl + AgC₂H₃O₂ → AgCl + HC₂H₃O₂
Step 1: <u>Calculate Moles of Starting Materials:</u>
Moles of HCl:
Moles = Mass / M.Mass
Moles = 72.9 g / 36.46
Moles = 1.99 moles
Moles of AgC₂H₃O₂:
Moles = 150 g / 166.91 g/mol
Moles = 0.898 moles
Step 2: <u>Find out Limiting reagent as:</u>
According to balance chemical equation.
1 mole of HCl reacts with = 1 mole of AgC₂H₃O₂
So,
1.99 moles of HCl will react with = X moles of AgC₂H₃O₂
Solving for X,
X = 1.99 mol × 1 mol / 1 mol
X = 1.99 mol of AgC₂H₃O₂
Hence, to completely consume 1.99 moles of Hydrochloric acid we will require 1.99 moles of Silver Acetate, But, we are provided with only 0.898 moles of Silver Acetate. This means Silver Acetate will consume first in the reaction therefore, it is the LIMITING REAGENT.
The mass percentage is 15.1465%.
Your answer would be, Gas atoms subjected to the electricity emit bright lines of light.
Hop that helps!!!
Answer:
<span>In the addition of hbr to 1-butyne the electrophile in the first step of the mechanism is <u>Hydrogen atom of HBr</u>.
Explanation:
In this reaction first of all HBr approaches the triple bond. A Pi Complex (weak inter-molecular interactions) is formed between the two molecules. And the triple bond attacks the partial positive hydrogen atom creating a negative charge on Bromine along with positive charge on itself (Sigma Complex). In second step the negative Bromide attacks the positive carbon of Butyne.</span>
10 down: Particle with no charge
Answer: Neutron