Answer:
--
--
--Br--
Explanation:
The steps involved in predicting the structure of the alkyl bromide compound are outlined below.
1) An examination of the product shows that the product could only be formed by a substitution reaction.
2) The structure of the alkyl bromide compound can be then predicted by replacing the methoxide group in the product after the substitution of bromine atom. This is because the methoxide ion acts as a strong nucleophile.
Therefore, by consideration the reaction mechanisms of reactions 1 and 2, it can be predicted that the structure of the alkyl bromide compound is
--
--
--Br--
. A pictorial diagram of the alkyl bromide compound is also attached.
Answer:- Third choice is correct, 17.6 moles
Solution:- The given balanced equation is:

We are asked to calculate the moles of potassium hydroxide needed to completely react with 2.94 moles of aluminium sulfate.
From the balanced equation, there is 1:6 mol ratio between aluminium sulfate and potassium hydroxide.
It is a simple mole to mole conversion problem. We solve it using dimensional set up as:

= 17.6 mol KOH
So, Third choice is correct, 17.6 moles of potassium hydroxide are required to react with 2.94 moles of aluminium sulfate.
Answer:
78.2 g/mol
Step-by-step explanation:
We can use the <em>Ideal Gas Law</em> to solve this problem:
pV = nRT
Since n = m/M, the equation becomes
pV = (m/M)RT Multiply each side by M
pVM = mRT Divide each side by pV
M = (mRT)/(pV)
Data:
ρ = 2.50 g/L
R = 0.082 16 L·atm·K⁻¹mol⁻¹
T =98 °C
p = 740 mmHg
Calculation:
(a)<em> Convert temperature to kelvins
</em>
T = (98 + 273.15) = 371.15 K
(b) <em>Convert pressure to atmospheres
</em>
p = 740 × 1/760 =0.9737 atm
(c) <em>Calculate the molar mass
</em>
Assume V = 1 L.
Then m = 2.50 g
M = (2.50 × 0.082 06 × 371.15)/(0.9737 × 1)
= 76.14/0.9737
= 78.2 g/mol