Answer:
1.) 0.1 M
2.) 0.2 M
3.) 1 M
4.) Solution #3 is the most concentrated because it has the highest molarity. This solution has the largest solute to solvent ratio. The more solvent there is, the lower the concentration and molarity.
Explanation:
To find the molarity, you need to (1) convert grams NaOH to moles (via molar mass from periodic table) and then (2) calculate the molarity (via the molarity equation). All of the answers should have 1 sig fig to match the given values.
Molar Mass (NaOH): 22.99 g/mol + 16.00 g/mol + 1.008 g/mol
Molar Mass (NaOH): 39.998 g/mol
4 grams NaOH 1 mole
---------------------- x ------------------ = 0.1 moles NaOH
39.998 g
1.)
Molarity = moles / volume (L)
Molarity = (0.1 moles) / (1 L)
Molarity = 0.1 M
2.)
Molarity = moles / volume (L)
Molarity = (0.1 moles) / (0.5 L)
Molarity = 0.2 M
3.)
Molarity = moles / volume (L)
Molarity = (0.1 moles) / (0.1 L)
Molarity = 1 M
Answer:
1) wavelength
2) trough
3) amplitude
4) crest
Explanation:
Hope this helps!
Answer:
In the 2nd millennium, the eastern coastlines of the Mediterranean are dominated by the Hittite and Egyptian empires, competing for control over the city states in the Levant (Canaan)
Explanation:
because it is
The rules of base pairing (or nucleotide pairing) are: A with T: the purine adenine (A) always pairs with the pyrimidine thymine (T) C with G: the pyrimidine cytosine (C) always pairs with the purine guanine (G)
The nucleotides in a base pair are complementary which means their shape allows them to bond together with hydrogen bonds. The A-T pair forms two hydrogen bonds. The C-G pair forms three. The hydrogen bonding between complementary bases holds the two strands of DNA together.