Answer:- The gas needs to be transferred to a container with a volume of 11.2 L.
Solution:- From Boyle's law. "At constant temperature, Volume is inversely proportional to the pressure."
It means, the volume is decreased if the pressure is increased and vice versa.
Here, the Pressure is decreasing from 537 torr to 255 torr. So, the volume must increase and calculated by using the equation:

Where,
is initial pressure and
is final pressure. Similarly,
is initial volume and
is final volume.
Let's plug in the values in the equation:
(537 torr)(5.30 L) = (255 torr)(
)

= 11.2 L
So, the new volume of the container needs to be 11.2 L.
Glucose and Oxygen
Hope this helped you out
C, erosion. Erosion is the natural process of breaking down natural products through wind, or similar natural resources.
Answer:
0.019 g.
Explanation:
- Firstly, we need to find the no. of moles of oxygen gas:
- We can use the general law of ideal gas: <em>PV = nRT.
</em>
where, P is the pressure of the gas in atm (P = 1.02 atm).
V is the volume of the gas in L (V = 15.0 L).
n is the no. of moles of the gas in mol (n = ??? mol).
R is the general gas constant (R = 0.0821 L.atm/mol.K),
T is the temperature of the gas in K (T = 28°C + 273 = 301.0 K).
∴ n = PV/RT = (1.02 atm)(15.0 L)/(0.0821 L.atm/mol.K)(301.0 K) = 0.62 mol.
- To find the mass of oxygen gas, we have:
<em>no. of moles = mass/molar mass.</em>
<em></em>
∴ mass of oxygen = (no. of moles)(molar mass) = (0.62 mol)(32.0 g/mol) = 0.019 g.
Magnesium plus chlorine equals to magnesium chloride