Answer:
Option C is the correct answer.
Explanation:
Considering vertical motion of ball:-
Initial velocity, u = 2 m/s
Acceleration , a = 9.81 m/s²
Displacement, s = 40 m
We have equation of motion s= ut + 0.5 at²
Substituting
s= ut + 0.5 at²
40 = 2 x t + 0.5 x 9.81 x t²
4.9t² + 2t - 40 = 0
t = 2.66 s or t = -3.06 s
So, time is 2.66 s.
Option C is the correct answer.
Answer:
this is impossible for me
Explanation:
Answer:
166 W
Explanation:
Power is the rate at which work is done.

The work done by Jill is the product of the weight of the pail and the height it moves.
The weight is the product of the mass and acceleration of gravity, <em>g</em>. Taking <em>g</em> as 9.81 m/s², the weight is
<em>W</em> = (6.90 kg)(9.81 m/s²) = 67.689 N
Work done = (67.689 N)(27.0 m) = 1827.603 J
Power = (1827.603 J) ÷ (11.0 s) = 166 W
To solve this problem we will apply the concepts related to energy conservation. From this conservation we will find the magnitude of the amplitude. Later for the second part, we will need to find the period, from which it will be possible to obtain the speed of the body.
A) Conservation of Energy,


Here,
m = Mass
v = Velocity
k = Spring constant
A = Amplitude
Rearranging to find the Amplitude we have,

Replacing,


(B) For this part we will begin by applying the concept of Period, this in order to find the speed defined in the mass-spring systems.
The Period is defined as

Replacing,


Now the velocity is described as,


We have all the values, then replacing,


It can never be shorter than a component - magnitude of avector is the square root of the sum of the components squared, and a square function never produces a negative number. However, it can be the same size as its component, if that component is the only one