1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
gregori [183]
3 years ago
8

Two 0.40 kg soccer ball collide elastically in a head-on collision. The first ball starts at rest, and the second ball has a spe

ed of 3.5 m/s. After the collision, the second ball is at rest.
A) What is the final speed of the first ball?
B) What is the kinetic energy of the first ball before the collision?
C) What is the kinetic energy if the second ball after the collision?
Physics
2 answers:
Harman [31]3 years ago
8 0

Answer:

(a) 3.5 m/s

(b) 0 J

(c) 0 J

Explanation:

mass of each ball, m = 0.4 kg

initial velocity of first ball, u1 = 0

initial velocity of second ball, u2 = 3.5 m/s

final velocity of second ball, v2 = 0

(a) let the final velocity of first ball is v1.

Use conservation of momentum

m1 x u1 + m2 x u2 = m1 x v1 + m2 x v2

0.4 x 0 + 0.4 x 3.5 = 0.4 x v1 + 0.4 x 0

v1 = 3.5 m/s

Thus, the final velocity of the first ball after collision is 3.5 m/s

(b) kinetic energy of first ball before collision

K1 = 0.5 x m1 x u1^2 = 0

(c) Kinetic energy of second ball after collision

K2 = 0.5 x m2 x v2^2 = 0

yulyashka [42]3 years ago
7 0

Explanation:

Mass of two soccer balls, m_1=m_2=0.4\ kg

Initial speed of first ball, u_1=0

Initial speed of second ball, u_2=3.5\ m/s

After the collision,

Final speed of the second ball, v_2=0

(a) The momentum remains conserved. Using the conservation of momentum to find it as :

m_1u_1+m_2u_2=m_1v_1+m_2v_2

v_1 is the final speed of the first ball

0.4\times 0+0.4\times 3.5=0.4v_1+0.4\times 0

0.4\times 3.5=0.4v_1

v_1=3.5\ m/s

(b) Let E_1 is the kinetic energy of the first ball before the collision. It is given by :

E_1=\dfrac{1}{2}mu_1^2

E_1=\dfrac{1}{2}\times 0.4\times 0

It is at rest, so, the kinetic energy of the first ball before the collision is 0.

(c) After the collision, the second ball comes to rest. So, the kinetic energy of the second ball after the collision is 0.

Hence, this is the required solution.

You might be interested in
To balance the forces on the box what direction must you push?
ss7ja [257]
The correct answer would be left
3 0
3 years ago
For numbers 2 and 3, which one is compression and which one is rarefaction?
DENIUS [597]
Compression is above the equilibrium and rarefaction is below
5 0
4 years ago
Barium, a group 2 element, forms an ionic compound with sulfur, a group 16 element. What is the formula for barium sulfide?
WITCHER [35]

Answer:BaS

Explanation:

Ba- barium

S-sulfur

6 0
3 years ago
On earth, two parts of a space probe weigh 14500 N and 4800 N. These parts are separated by a center-to-center distance of 18 m
Nastasia [14]

Answer:

F = 1.489*10^{-7}  N

Explanation: Weight of space probes on earth is given by:W= m*g

W= weight of the object( in N)

m= mass of the object (in kg)

g=acceleration due to gravity(9.81 \frac{m}{s^{2} })

Therefore,

m_{1} = \frac{14500}{9.81}

m_{1} = 1478.08  kg

Similarly,

m_{2} = \frac{4800}{9.81}

m_{2} = 489.29  kg

Now, considering these two parts as uniform spherical objects

Also, according to Superposition principle, gravitational net force experienced by an object is sum of all individual forces on the object.

Force between these two objects is given by:

F =  \frac{Gm_{1} m_{2}}{R^{2} }

G= gravitational constant (6.67 * 10^{-11} m^{3} kg^{-1} s^{-2})

m_{1} , m_{2}= masses of the object

R= distance between their centres (in m)(18 m)

Substituiting all these values into the above formula

F = 1.489*10^{-7}  N

This is the magnitude of force experienced by each part in the direction towards the other part, i.e the gravitational force is attractive in nature.

7 0
3 years ago
Question 33
pantera1 [17]

Answer:

A. The waves in the water travel faster and at a higher frequency than they travel on land.

Explanation:

The main reason why human ears can hear dolphins' vocalizations while under the water but cannot hear them well on land is because water is denser than air and air particles travel faster in denser particles.

Denser particles also ensures that the frequency of the waves move faster which in turn produces a faster and louder result.

3 0
3 years ago
Other questions:
  • What is the thinnest soap film (excluding the case of zero thickness) that appears black when illuminated with light with a wave
    15·1 answer
  • A car has a force of 2000N and a mass of<br> 1000kg. What is the acceleration of the<br> car?
    11·1 answer
  • Why is the crust less dense than the core
    14·1 answer
  • A steel bar that is at 10 ° c is 5 meters long, a bar for heated to 120 ° c, how long is that bar? Α = 1.2.10- ° c
    13·1 answer
  • A falcon is hovering above the ground, then suddenly pulls in its wings and begins to fall toward the ground. Air resistance is
    5·1 answer
  • A car of mass 500 kg increases its velocity from 40 metre per second to 60 metre per second in 10 second find the distance trave
    9·1 answer
  • HELP=BRAILIEST+40 POINTS PLS HELP MEEEEEEEEEE
    15·2 answers
  • You and your little cousin sit on a see-saw. You sit 0.5 m from the fulcrum, and your cousin sits 1.5 m from the fulcrum. You we
    5·1 answer
  • A ball is thrown up into the air with an initial velocity of 18 m/s. A) How high does the ball go? B) Calculate the time needed
    11·1 answer
  • A beaker of mass 1.2 kg containing 2.5 kg of water rests on a scale. A 3.8 kg block of a metallic alloy of density 3300 kg/m3 is
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!