1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Y_Kistochka [10]
3 years ago
8

A 2-kg box sits on a horizontal table. the force of friction between the box and the table is 10 n. the box is pushed to the rig

ht with an applied horizontal force of 20 n. what is the acceleration of the box?
Physics
1 answer:
dangina [55]3 years ago
6 0
By Newton's 2nd law of motion, F = ma, where F is force, m is mass, and a is acceleration.

Rearranging this equation to find acceleration would give us:
a = F/m

The horizontal force to the right is 10N, because the box is pushed to the right with a force of 20N, and the friction force of 10N opposes that, so:
20N - 10N = 10N

The mass is 2kg.

Putting these values into the equation gives us:
a = F/m
= 10/2
= 5ms^-2

The acceleration of the box is 5ms^-2
You might be interested in
Are cells made of tisse?
zepelin [54]

Answer:

Yes

Explanation:

Cells make up tissues. Hope this helped

5 0
3 years ago
Read 2 more answers
A 25 kg box sliding to the left across a horizontal surface is brought to a halt in a distance of 15 cm by a horizontal rope pul
Nuetrik [128]
B)is pills everything to the surface of the earth not sure about A
5 0
3 years ago
Give three examples from your life of magnetic force.
Margaret [11]
Headphones, refrigerator magnets, and compasses

Hope that was helpful.
4 0
3 years ago
Read 2 more answers
In 1999, Robbie Knievel was the first to jump the Grand Canyon on a motorcycle. At a narrow part of the canyon (65 m wide) and t
vfiekz [6]

Answer:

His launching angle was 14.72°

Explanation:

Please, see the figure for a graphic representation of the problem.

In a parabolic movement, the velocity and displacement vectors are two-component vectors because the object moves along the horizontal and vertical axis.

The horizontal component of the velocity is constant, while the vertical component has a negative acceleration due to gravity. Then, the velocity can be written as follows:

v = (vx, vy)

where vx is the component of v in the horizontal and vy is the component of v in the vertical.

In terms of the launch angle, each component of the initial velocity can be written using the trigonometric rules of a right triangle (see attached figure):

sin angle = opposite / hypotenuse

cos angle = adjacent / hypotenuse

In our case, the side opposite the angle is the module of v0y and the side adjacent to the angle is the module of vx. The hypotenuse is the module of the initial velocity (v0). Then:

sin angle = v0y / v0  then: v0y = v0 * sin angle

In the same way for vx:

vx = v0 * cos angle

Using the equation for velocity in the x-axis we can find the equation for the horizontal position:

dx / dt = v0 * cos angle

dx = (v0 * cos angle) dt (integrating from initial position, x0, to position at time t and from t = 0 and t = t)

x - x0 = v0 t cos angle

x = x0 + v0 t cos angle

For the displacement in the y-axis, the velocity is not constant because the acceleration of the gravity:

dvy / dt = g ( separating variables and integrating from v0y and vy and from t = 0 and t)

vy -v0y = g t

vy = v0y + g t

vy = v0 * sin angle + g t

The position will be:

dy/dt = v0 * sin angle + g t

dy = v0 sin angle dt + g t dt (integrating from y = y0 and y and from t = 0 and t)

y = y0 + v0 t sin angle + 1/2 g t²

The displacement vector at a time "t" will be:

r = (x0 + v0 t cos angle, y0 + v0 t sin angle + 1/2 g t²)

If the launching and landing positions are at the same height, then the displacement vector, when the object lands, will be (see figure)

r = (x0 + v0 t cos angle, 0)

The module of this vector will be the the total displacement (65 m)

module of r = \sqrt{(x0 + v0* t* cos angle)^{2} }  

65 m = x0 + v0 t cos angle ( x0 = 0)

65 m / v0 cos angle = t

Then, using the equation for the position in the y-axis:

y = y0 + v0 t sin angle + 1/2 g t²

0 =  y0 + v0 t sin angle + 1/2 g t²

replacing t =  65 m / v0 cos angle and y0 = 0

0 = 65m (v0 sin angle / v0 cos angle) + 1/2 g (65m / v0 cos angle)²  

cancelating v0:

0 = 65m (sin angle / cos angle) + 1/2 g * (65m)² / (v0² cos² angle)

-65m (sin angle / cos angle) = 1/2 g * (65m)² / (v0² cos² angle)  

using g = -9.8 m/s²

-(sin angle / cos angle) * (cos² angle) = -318.5 m²/ s² / v0²

sin angle * cos angle = 318.5 m²/ s² / (36 m/s)²

(using trigonometric identity: sin x cos x = sin (2x) / 2

sin (2* angle) /2 = 0.25

sin (2* angle) = 0.49

2 * angle = 29.44

<u>angle = 14.72°</u>

3 0
3 years ago
:) What is practical machine? what is the reda<br>tion between MA and VR in a practical<br>machine?​
denis-greek [22]
Answer: For ideal machine efficiency = 1. Hence M.A = V. R. The V. R of an ideal machine and the practical machine is a constant or is the same for both
3 0
3 years ago
Other questions:
  • A minivan is rated for maximum carrying capacity of 900 lbs. if the luggage weighs 100 lbs, what is the maximum average weight a
    11·1 answer
  • Does gravity increase or decrease with greater mass?
    11·1 answer
  • T Object]User: Which of the following does not affect the electrical resistance of a body?
    5·2 answers
  • During an autopsy and subsequent toxicology reports, it is discovered that a man died from arsenic poisoning. When investigating
    10·1 answer
  • is it true a behavior adaptation is a biochemical change within that organism that helps it survive or maintain homeostasis
    6·1 answer
  • Mutations provide a basis for...
    10·1 answer
  • A boy and his skateboard have a combined mass of 65 kg what is the speed of the boy and skateboard if they have a momentum of 27
    15·1 answer
  • If a green ball has a greater momentum than an orange ball and both balls are moving at the same velocity, then _________.
    13·2 answers
  • A force of 8 N accelerates by 4 m/s^2. What would be the amount of force needed to give a final acceleration of 5.3 m/s^2
    15·1 answer
  • An electromagnetic wave of wavelength 435 nm is traveling in vacuum in the —z direction. The electric field has an amplitude of
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!