1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Slav-nsk [51]
4 years ago
13

Crash testing is a highly expensive procedure to evaluate the ability of an automobile to withstand a serious accident. A simple

random sample of 12 small cars were subjected to a head-on collision at 40 miles per hour. Of them 8 were "totaled," meaning that the cost of repairs is greater than the value of the car. Another sample of 15 large cars were subjected to the same test, and 5 of them were totaled. Find a 95% confidence interval for the difference in the prop
Mathematics
1 answer:
polet [3.4K]4 years ago
6 0

Answer:

95% confidence interval for the difference in the proportion is [-0.017 , 0.697].

Step-by-step explanation:

We are given that a simple random sample of 12 small cars were subjected to a head-on collision at 40 miles per hour. Of them 8 were "totaled," meaning that the cost of repairs is greater than the value of the car.

Another sample of 15 large cars were subjected to the same test, and 5 of them were totaled.

Firstly, the pivotal quantity for 95% confidence interval for the difference between population proportion is given by;

                             P.Q. = \frac{(\hat p_1-\hat p_2)-(p_1-p_2)}{\sqrt{\frac{\hat p_1(1-\hat p_1)}{n_1}+\frac{\hat p_2(1-\hat p_2)}{n_2} }  }  ~ N(0,1)

where, \hat p_1 = sample proportion of small cars that were totaled = \frac{8}{12} = 0.67

\hat p_2 = sample proportion of large cars that were totaled = \frac{5}{15} = 0.33

n_1 = sample of small cars = 12

n_2 = sample of large cars = 15

p_1 = population proportion of small cars that are totaled

p_2 = population proportion of large cars that were totaled

<em>Here for constructing 95% confidence interval we have used Two-sample z proportion statistics.</em>

So, 95% confidence interval for the difference between population population, (p_1-p_2) is ;

P(-1.96 < N(0,1) < 1.96) = 0.95  {As the critical value of z at 2.5% level

                                                    of significance are -1.96 & 1.96}  

P(-1.96 < \frac{(\hat p_1-\hat p_2)-(p_1-p_2)}{\sqrt{\frac{\hat p_1(1-\hat p_1)}{n_1}+\frac{\hat p_2(1-\hat p_2)}{n_2} }  } < 1.96) = 0.95

P( -1.96 \times {\sqrt{\frac{\hat p_1(1-\hat p_1)}{n_1}+\frac{\hat p_2(1-\hat p_2)}{n_2} }  } < {(\hat p_1-\hat p_2)-(p_1-p_2)} < 1.96 \times {\sqrt{\frac{\hat p_1(1-\hat p_1)}{n_1}+\frac{\hat p_2(1-\hat p_2)}{n_2} }  } ) = 0.95

P( (\hat p_1-\hat p_2)-1.96 \times {\sqrt{\frac{\hat p_1(1-\hat p_1)}{n_1}+\frac{\hat p_2(1-\hat p_2)}{n_2} }  } < p_1-p_2 < (\hat p_1-\hat p_2)+1.96 \times {\sqrt{\frac{\hat p_1(1-\hat p_1)}{n_1}+\frac{\hat p_2(1-\hat p_2)}{n_2} }  } ) = 0.95

<u>95% confidence interval for</u> p_1-p_2 = [(\hat p_1-\hat p_2)-1.96 \times {\sqrt{\frac{\hat p_1(1-\hat p_1)}{n_1}+\frac{\hat p_2(1-\hat p_2)}{n_2} }  } , (\hat p_1-\hat p_2)+1.96 \times {\sqrt{\frac{\hat p_1(1-\hat p_1)}{n_1}+\frac{\hat p_2(1-\hat p_2)}{n_2} }  }]

= [(0.67-0.33)-1.96 \times {\sqrt{\frac{0.67(1-0.67)}{12}+\frac{0.33(1-0.33)}{15} }  } , (0.67-0.33)+1.96 \times {\sqrt{\frac{0.67(1-0.67)}{12}+\frac{0.33(1-0.33)}{15} }  }]

= [-0.017 , 0.697]

Therefore, 95% confidence interval for the difference between proportions l and 2 is [-0.017 , 0.697].

You might be interested in
What property is illustrated by the statement?
Vladimir [108]
<span>C. Commutative Property of Addiction </span>
5 0
3 years ago
Read 2 more answers
How many ways can two marbles be chosen from a set of five marbles?<br> 5<br> 10<br> 15<br> 20
PtichkaEL [24]

Answer:

The answer is 20.

Step-by-step explanation:

6 0
3 years ago
Read 2 more answers
A line passes through the point (0, 2) and has a slope of -1/4 What is the equation of the line?
maw [93]

Answer:

The required equation is x + 4y = 8 !!

Step-by-step explanation:

<em><u>Given</u></em><em><u> </u></em><em><u>:</u></em><em><u>-</u></em><em><u> </u></em><em> </em><em>the</em><em> </em><em>line</em><em> </em><em>pass</em><em>es</em><em> </em><em>t</em><em>hrough</em><em> </em><em>the</em><em> </em><em>point</em><em> </em><em>(</em><em> </em><em>0</em><em> </em><em>,</em><em> </em><em>2</em><em> </em><em>)</em><em> </em><em>and</em><em> </em><em>the</em><em> </em><em>slope</em><em> </em><em>of</em><em> </em><em>the</em><em> </em><em>line</em><em> </em><em>is</em><em> </em><em>(</em><em> </em><em>-</em><em>1</em><em>/</em><em>4</em><em> </em><em>)</em><em> </em>

<em>•</em><em> </em><em>Also</em><em>,</em><em> </em><em>to</em><em> </em><em>form</em><em> </em><em>an</em><em> </em><em>eq</em><em>uation</em><em> </em><em>when</em><em> </em><em>a</em><em> </em><em>po</em><em>int</em><em> </em><em>throu</em><em>gh</em><em> </em><em>which</em><em> </em><em>line</em><em> </em><em>passes</em><em> </em><em>and</em><em> </em><em>slope</em><em> </em><em>of</em><em> </em><em>line</em><em> </em><em>is</em><em> </em><em>given</em><em> </em><em>we</em><em> </em><em>use</em><em> </em><em>the</em><em> </em><em>formula</em><em> </em><em>;</em>

<em>(</em><em> </em><em>y</em><em> </em><em>-</em><em> </em><em>y1</em><em> </em><em>)</em><em> </em><em>=</em><em> </em><em>m</em><em> </em><em>(</em><em> </em><em>x</em><em> </em><em>-</em><em> </em><em>x1</em><em> </em><em>)</em>

<em>Where</em><em> </em><em>,</em><em> </em><em>y</em><em> </em><em>and</em><em> </em><em>x</em><em> </em><em>are</em><em> </em><em>vari</em><em>ables</em><em> </em>

<em>and</em><em> </em><em>(</em><em> </em><em>x1</em><em> </em><em>,</em><em> </em><em>y1 </em><em>)</em><em> </em><em>are</em><em> </em><em>the</em><em> </em><em>po</em><em>ints</em><em> </em><em>through</em><em> </em><em>which</em><em> </em><em>line </em><em>passes</em><em> </em>

<em>also</em><em>,</em><em> </em><em>m</em><em> </em><em>=</em><em> </em><em>slope</em><em> </em><em>of</em><em> </em><em>the</em><em> </em><em>re</em><em>quired</em><em> </em><em>line</em><em> </em>

<em>Here</em><em> </em><em>,</em><em> </em><em>x1</em><em> </em><em>=</em><em> </em><em>0</em><em> </em><em>,</em><em> </em><em>y1</em><em> </em><em>=</em><em> </em><em>2</em><em> </em><em>and</em><em> </em><em>m</em><em> </em><em>=</em><em> </em><em>(</em><em> </em><em>-1</em><em>/</em><em>4</em><em> </em><em>)</em><em> </em>

<em>[</em><em> </em><em>Ref</em><em>er to</em><em> the</em><em> attached</em><em> file</em><em> for</em><em> </em><em>furth</em><em>er</em><em> </em><em>process</em><em> </em><em>]</em>

3 0
3 years ago
The area of a rectangle is 12x^2-8x-15. The width is (2x-3). What is the length of the rectangle?
Aliun [14]
The length of the rectangle is (6x+5)
4 0
4 years ago
How many different arrangements of 55 letters can be formed if the first letter must be w or k​ (repeats of letters are​ allowed
defon
If the remaining 4 letters can be anything, you have 2*26^4 = 913,952 possible 5-letter ham radio call signs.
3 0
3 years ago
Other questions:
  • 36 1/4% written as a fraction please?
    8·1 answer
  • In a marble collection, 1/8 of the marbles are blue. Of the blue marbles, 1/2 have sparkles. What fraction of the marbles in the
    13·1 answer
  • Is the relationship in the table linear,exponential,or neither? Explain how you know.
    8·1 answer
  • Need help solving -13 + 2c + 5c + 2
    11·1 answer
  • Please HElppppppppppppp meeeeeeee! I have less than 10 minutes!
    11·1 answer
  • PLSSS HELP!! I need the answer m.
    15·1 answer
  • PLEASE ANSWER ASAP
    11·2 answers
  • Guys I had to construct a icosahedron for geometry class. I included a image so how does it look????? I’m really worried and i j
    13·1 answer
  • Need help now due in 5 minutes pls help quick now pls pls pls pls pls
    7·1 answer
  • What is the ratio for the volumes of two similar cylinders, given that the ratio of their heights and radii is 2:3?
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!