Answer:
0.0667 m
Explanation:
λ = wavelength of light = 400 nm = 400 x 10⁻⁹ m
D = screen distance = 2.5 m
d = slit width = 15 x 10⁻⁶ m
n = order = 1
θ = angle = ?
Using the equation
d Sinθ = n λ
(15 x 10⁻⁶) Sinθ = (1) (400 x 10⁻⁹)
Sinθ = 26.67 x 10⁻³
y = position of first minimum
Using the equation for small angles
tanθ = Sinθ = y/D
26.67 x 10⁻³ = y/2.5
y = 0.0667 m
Answer: The question is incomplete or missing details. here is the remaining part of the question ;
1. impossible to determine
2. half of Isaac’s
3. the same as Isaac’s
4. twice Isaac’s
The angular speed of feng will be the same as that of Isaac. Hence the answer is option 3
Explanation:
Since we have been told that both feng and isaac are riding on a merry go round i.e in a circular motion, irrespective of how fast one ride above the other, the angular speed will be constant since they are riding on a merry go round, as such both feng and isaac will maintain equal angular speed, hence the angular speed of feng will be the same as that of Isaac.
Answer:
a) R = ρ₀ L /π(r_b² - R_a²)
, b) ρ₀ = V / I π (r_b² - R_a²) / L
Explanation:
a) The resistance of a material is given by
R = ρ l / A
where ρ is the resistivity, l is the length and A is the area
the length is l = L and the resistivity is ρ = ρ₀
the area is the area of the cylindrical shell
A = π r_b² - π r_a²
A = π (r_b² - r_a²)
we substitute
R = ρ₀ L /π(r_b² - R_a²)
b) The potential difference is related to current and resistance by ohm's law
V = i R
we subsist the expression of resistance
V = I ρ₀ L /π (r_b² - R_a²)
ρ₀ = V / I π (r_b² - R_a²) / L