Answers are:
(1) KE = 1 kg m^2/s^2
(2) KE = 2 kg m^2/s^2
(3) KE = 3 kg m^2/s^2
(4) KE = 4 kg m^2/s^2
Explanation:
(1) Given mass = 0.125 kg
speed = 4 m/s
Since Kinetic energy = (1/2)*m*(v^2)
Plug in the values:
Hence:
KE = (1/2) * 0.125 * (16)
KE = 1 kg m^2/s^2
(2) Given mass = 0.250 kg
speed = 4 m/s
Since Kinetic energy = (1/2)*m*(v^2)
Plug in the values:
Hence:
KE = (1/2) * 0.250 * (16)
KE = 2 kg m^2/s^2
(3) Given mass = 0.375 kg
speed = 4 m/s
Since Kinetic energy = (1/2)*m*(v^2)
Plug in the values:
Hence:
KE = (1/2) * 0.375 * (16)
KE = 3 kg m^2/s^2
(4) Given mass = 0.500 kg
speed = 4 m/s
Since Kinetic energy = (1/2)*m*(v^2)
Plug in the values:
Hence:
KE = (1/2) * 0.5 * (16)
KE = 4 kg m^2/s^2
Answer and Explanation:
Limitation of Doppler shift :
The Doppler impact is relevant when the speeds of the wellspring of sound and spectator are considerably less than the speed of sound. The movement of both the spectator and the source is along a similar straight line.When movement is not in straight line or velocity is not much less than speed of light then we can not use Doppler shift
This is the limitation of Doppler shift to determine the object distance
Chemical Potential Energy is released when chemical bonds between atoms are broken (like covalent and ionic) and is released mainly as thermal
<span>Elastic Potential is released when the molecules in the material are allowed to go back to there original form, and is released mainly as kinetic</span>
I beleive that the answer is B.
Answer:
A) ΔU = 3.9 × 10^(10) J
B) v = 8420.75 m/s
Explanation:
We are given;
Potential Difference; V = 1.3 × 10^(9) V
Charge; Q = 30 C
A) Formula for change in energy of transferred charge is given as;
ΔU = QV
Plugging in the relevant values gives;
ΔU = 30 × 1.3 × 10^(9)
ΔU = 3.9 × 10^(10) J
B) We are told that this energy gotten above is used to accelerate a 1100 kg car from rest.
This means that the initial potential energy will be equal to the final kinetic energy since all the potential energy will be converted to kinetic energy.
Thus;
P.E = K.E
ΔU = ½mv²
Where v is final velocity.
Plugging in the relevant values;
3.9 × 10^(10) = ½ × 1100 × v²
v² = [7.8 × 10^(8)]/11
v² = 70909090.9090909
v = √70909090.9090909
v = 8420.75 m/s